

(12) United States Patent

Wang

(10) **Patent No.:**

US 9,248,220 B2

(45) **Date of Patent:**

*Feb. 2, 2016

(54) MEDICAL DEVICE RAPID DRUG RELEASING COATINGS COMPRISING A THERAPEUTIC AGENT AND A CONTRAST **AGENT**

(71) Applicant: Lutonix, Inc., New Hope, MN (US)

Inventor: Lixiao Wang, Medina, MN (US)

(73) Assignee: Lutonix, Inc., New Hope, MN (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-

claimer.

(21) Appl. No.: 14/560,640

Filed: Dec. 4, 2014 (22)

(65)**Prior Publication Data**

> US 2015/0093337 A1 Apr. 2, 2015

Related U.S. Application Data

- (63) Continuation of application No. 13/846,078, filed on Mar. 18, 2013, now Pat. No. 8,932,561, which is a continuation of application No. 12/123,956, filed on May 20, 2008, now Pat. No. 8,425,459, which is a continuation-in-part of application No. 11/942,452, filed on Nov. 19, 2007, now Pat. No. 8,414,909.
- (60) Provisional application No. 60/860,084, filed on Nov. 20, 2006, provisional application No. 60/880,742, filed on Jan. 17, 2007, provisional application No. 60/897,427, filed on Jan. 25, 2007, provisional application No. 60/903,529, filed on Feb. 26, 2007, provisional application No. 60/926,850, filed on Apr. 30, 2007, provisional application No. 60/904,473, filed on Mar. 2, 2007, provisional application No. 60/981,380, filed on Oct. 19, 2007, provisional application No. 60/981,384, filed on Oct. 19, 2007.

(51) Int. Cl. A61K 49/04 (2006.01)A61L 31/18 (2006.01)(2006.01)A61K 31/337 A61K 31/436 (2006.01)A61L 29/16 (2006.01)A61L 29/18 (2006.01)A61L 31/16 (2006.01)A61M 5/00 (2006.01)(2006.01)A61B 18/24 A61F 2/07 (2013.01)A61F 2/24 (2006.01)A61F 2/82 (2013.01)A61L 29/08 (2006.01)(2006.01)A61L 31/10 A61M 25/09 (2006.01)A61M 25/10 (2013.01)A61M 31/00 (2006.01)A61M 37/00 (2006.01)

(52) U.S. Cl.

CPC A61L 31/18 (2013.01); A61B 18/24 (2013.01); A61F 2/07 (2013.01); A61F 2/24 (2013.01); A61F 2/82 (2013.01); A61K 31/337 (2013.01); A61K 31/436 (2013.01); A61L 29/085 (2013.01); A61L 29/16 (2013.01); A61L 29/18 (2013.01); A61L 31/10 (2013.01); A61L 31/16 (2013.01); A61M 5/007 (2013.01); A61M 25/09 (2013.01); A61M 25/1002 (2013.01); A61M 31/005 (2013.01); A61M 37/00 (2013.01); A61L 2300/416 (2013.01); A61L 2300/606 (2013.01); A61L 2300/608 (2013.01); A61L 2420/06 (2013.01); A61M 2025/105 (2013.01)

(58) Field of Classification Search

CPC ... A61L 31/16; A61L 31/18; A61L 2300/416; A61L 2300/608; A61L 2300/606; A61L 31/10; A61L 29/085; A61K 31/337; A61K 2300/00; A61K 31/436; A61M 5/007; A61M 2025/105; A61M 37/00; A61M 31/005; A61F 2/82; A61F 2/24; A61F 2/07 See application file for complete search history.

(56)References Cited

U.S. PATENT DOCUMENTS

3,929,992 A	12/1975	Sehgal et al.
3,993,749 A	11/1976	Sehgal et al.
4,316,885 A	2/1982	Rakhit et al.
4,364,921 A	12/1982	Speck et al.
4,921,483 A	5/1990	Wijay et al.
5,023,262 A	6/1991	Caufield et al.
5,023,263 A	6/1991	Von Burg et al.
5,023,264 A	6/1991	Caufield et al.

(Continued)

FOREIGN PATENT DOCUMENTS

DE 10115740 A1 10/2002 1539267 A2 6/2005 (Continued)

OTHER PUBLICATIONS

Li J. Chiang et al., "Potent inhibition of tumor survival in vivo by β-lapachone plus taxol: Combining drugs imposes different artificial checkpoints," PNAS, vol. 96, No. 23, Nov. 9, 1999, at pp. 13369-13374.

(Continued)

Primary Examiner — Suzanne Ziska (74) Attorney, Agent, or Firm — Dinsmore & Shohl LLP

(57)ABSTRACT

The invention relates to a coated medical device for rapid delivery of a therapeutic agent to a tissue in seconds to minutes. The medical device has a layer overlying the exterior surface of the medical device. The layer contains a therapeutic agent, a contrast agent, and an additive.

20 Claims, 2 Drawing Sheets

US 9,248,220 B2 Page 2

(56)	F	Referen	ces Cited		59,121 59,227			Harrison et al. Failli et al.
	IIS PA	TENT	DOCUMENTS		53,145			Failli et al.
	0.0.11	11111	BOCOMBINIS		53,146			Morris et al.
5,026,607	A	6/1991	Kiezulas et al.		57,709			Skotnicki et al.
5,061,738			Solomon et al.		73,518 99,307			Haaga et al. Bacher et al.
5,080,899 5,092,841			Sturm et al. Spears et al.		07.463			Schwartz et al.
5,100,883			Schiehser et al.	5,60	09,629	A	3/1997	Fearnot et al.
5,102,402	A	4/1992	Dror et al.		16,608			Kinsella et al.
5,102,876			Caufield et al.		32,772 74,192			Alcime et al. Sahatjian et al.
5,118,677 5,118,678			Caufield et al. Kao et al.		74,287			Slepian et al.
5,120,322			Davis et al.	,	79,400		10/1997	
5,120,725			Kao et al.		93,034 98.582			Buscemi et al. Bastart et al.
5,120,726 5,120,727			Failli et al. Kao et al.	,	02,754			Zhong et al.
5,120,842		6/1992			16,981			Hunter et al.
5,130,307	A	7/1992	Failli et al.		33,925			Kunz et al.
5,135,516			Sahatjian et al.		38,901 52,930			Wang et al. Rise et al.
5,138,051 5,151,413			Hughes et al. Caufield et al.		56,158			Opolski
5,162,333			Failli et al.		76,184		7/1998	
5,164,299			Lambert		76,943			Christians et al. Lee et al.
5,164,399			Failli et al. Failli et al.		80,462 97,887			Rosen et al.
5,177,203 5,194,447			Kao et al.		07,306			Shapland et al.
5,196,596			Abatjoglou		24,049			Ragheb et al.
5,199,951			Spears et al.		27,289 43,089			Reiley et al. Sahatjian et al.
5,221,670 5,221,740			Caufield et al. Hughes e al.		55,814		2/1999	
5,233,036			Hughes et al.		58,719		2/1999	Tsukernik
5,252,579	A 1		Skotnicki et al.		59,127		2/1999	
5,254,089		0/1993			73,904 79,697			Ragheb et al. Ding et al.
5,260,300 5,262,423			Hu et al. Kao et al.		93,840			Hull et al.
5,269,770			Conway et al.		93,447			Lucas et al.
5,302,584			Kao et al.		19,145 19,570			Sahatjian et al. Hostettler et al.
5,304,121 5,324,261			Sahatjian Amundson et al.		22,730			Hu et al.
5,346,893			Failli et al.	5.94	47.977	A	9/1999	Slepian et al.
5,349,060	A	9/1994	Kao et al.		54,706			Sahatjian
5,362,718			Skotnicki et al.		77,163 81,568		11/1999 11/1999	Kunz et al.
5,370,614 5,373,014			Amundson et al. Failli et al.		85,325		11/1999	
5,378,696	A	1/1995	Caufield et al.		89,591		11/1999	
5,378,836			Kao et al.		15,809 39,721			Zhu et al. Johnson et al.
5,380,298 5,380,299			Zabetakis et al. Fearnot et al.		42,875			Ding et al.
5,385,908			Nelson et al.		46,230			Chung et al.
5,385,909			Nelson et al.		50,980		4/2000	
5,385,910			Ocain et al. Nelson et al.		56,722 74,659			Jayaraman et al. Kunz et al.
5,387,680 5,389,639			Failli et al.		96,070			Ragheb et al.
5,391,730			Skotnicki et al.		20,904			Hostettler et al.
5,411,967			Kao et al.		29,705 43,037		10/2000	Grantz Goldstein et al.
5,441,759 5,446,048			Crouther et al. Failli et al.		46,358		11/2000	
5,463,048			Skotnicki et al.		76,849			Yang et al.
5,464,650			Berg et al.		18,016 21,467			Tedeschi et al. Nazarova et al.
5,480,988 5,480,989			Failli et al. Kao et al.		28,393			DiCosmo et al.
5,482,945			Armstrong et al.	6,24	48,363	B1	6/2001	Patel et al.
5,489,680	A	2/1996	Failli et al.		51,630			Nazarova et al.
5,490,839			Wang et al.		80,411 87,285			Lennox Michal et al.
5,491,231 5,496,276			Nelson et al. Wang et al.		94,192		9/2001	Patel et al.
5,504,091			Molnar et al.		99,604			Ragheb et al.
5,504,092			Nilsson et al.	,	99,980			Shah et al.
5,504,204 5,508,399			Failli et al.		06,144			Sydney et al. Barry et al.
5,508,399			Kao et al. Fan et al.		12,406			Jayaraman
5,516,781	A	5/1996	Morris et al.	6,32	28,970	B1	12/2001	Molnar-Kimber et al.
5,525,348			Whitbourne et al.		31,547			Zhu et al.
5,525,610			Caufield et al.		35,029 54,856			Kamath et al. Ding et al.
5,530,007 5,530,121			Kao et al.		54,856 54,893			Sahatjian et al.
5,532,355			Skotnicki et al.		59,039			Palasis et al.
5,536,729			Waranis et al.		95,326		5/2002	Castro et al.

US 9,248,220 B2 Page 3

(56)	Referen	ices Cited		909 B2		
	U.S. PATENT	DOCUMENTS		910 B2 459 B2		
	0.5.17112111	DOCUMENTS		055 B2		Wang et al.
6,409,716		Sahatjian et al.		561 B2		
6,419,692		Yang et al.	2001/0002 2001/0018			Berg et al.
6,432,973 6,443,941		Zhu et al. Slepian et al.	2001/0034			
6,444,324		Yang et al.	2002/0010			Jayaraman
6,458,138		Sydney et al.	2002/0039 2002/0077			Unger Clemens et al.
6,506,408 6,524,274		Palasis Rosenthal et al.	2002/00/7			Ding et al.
6,528,150		Nazarova et al.	2002/0095		7/2002	Palasis
6,544,544	B2 4/2003	Hunter et al.	2002/0098			Bates et al.
6,571,125		Thompson	2002/0099 2002/0102			Slepian et al. Anderson
6,576,224 6,589,215		Osbakken et al. Yang et al.	2002/0138		9/2002	Tuch
6,589,546		Kamath et al.	2002/0151			Yang et al.
6,592,548		Jayaraman	2002/0183 2002/0192			Hunter Hunter et al.
6,610,035 6,616,650		Yang et al.	2003/0004			Hunter et al.
6,656,156		Yang et al.	2003/0008			Dukart et al.
6,677,357		Zhu et al.	2003/0045 2003/0064			Anderson Richter
6,680,330 6,682,545		Zhu et al. Kester	2003/0004			Zhu et al.
6,699,272		Slepian et al.	2003/0100		5/2003	Segal et al.
6,730,064		Ragheb et al.	2003/0100			Scott et al.
6,774,278		Ragheb et al.	2003/0114 2003/0114			Zhu et al. Rosenthal et al.
6,890,339 6,890,546		Sahatjian et al. Mollison et al.	2003/0157			Cavaillon et al.
6,893,431		Naimark et al.	2003/0157			Hunter et al.
6,899,731		Li et al.	2003/0207 2003/0207			Chen Ishibuchi et al.
6,918,869 6,921,390		Shaw et al. Bucay-Couto et al.	2003/0207			
6,939,320		Lennox	2003/0235			Schwarz
6,958,153	B1 10/2005	Ormerod et al.	2004/0002			Fischell et al. Castro et al.
6,991,809		Anderson	2004/0018 2004/0037			
6,997,949 7,008,411		Mandrusov et al.	2004/0062			Hunter et al.
7,025,752	B2 4/2006	Rice et al.	2004/0073			Bates et al.
7,048,714		Richter	2004/0076 2004/0077			Hunter et al. Ashraf et al.
7,056,550 7,060,051		Davila et al. Palasis	2004/0087			Richter
7,066,904		Rosenthal et al.	2004/0097			Burkitt et al.
7,077,859		Sirhan et al.	2004/0127 2004/0156			Zhang et al. Anderson
7,108,684 7,144,419		Farnan Cheng et al.	2004/0167			Rubino et al.
7,153,957		Chew et al.	2004/0176			Sherman et al.
7,160,317		Mc Hale et al.	2004/0197 2004/0201			Gravett Anderson
7,163,555 7,172,619		Dinh Richter	2004/0201			Lambert et al.
7,175,873		Roorda et al.	2004/0219	214 A1	11/2004	Gravett et al.
7,176,261		Tijsma et al.	2004/0224 2004/0224			Pacetti et al.
7,179,251 7,198,637		Palasis Deshmukh et al.	2004/0224			Gravett et al.
7,198,037		Richter	2004/0230	176 A1	11/2004	Shanahan et al.
7,214,198		Greco et al.	2004/0258 2005/0025			Gibbons, Jr. et al. Richard et al.
7,226,586 7,232,573		Fitzhugh et al.	2005/0025			Segal et al.
7,235,096		Van Tassel et al.	2005/0042	268 A1	2/2005	Aschkenasy et al.
7,244,444	B2 7/2007	Bates	2005/0049			Benjamin et al.
7,247,313 7,282,213		Roorda et al.	2005/0054 2005/0055			Segal et al. Campbell
7,282,213		Schroeder et al. Hossainy et al.	2005/0080			Sydney et al.
7,292,885	B2 11/2007	Scott et al.	2005/0100			Osborne et al.
7,294,329			2005/0101 2005/0123			Speck et al. Sung et al.
7,306,580 7,507,433	B2 12/2007 B2 3/2009	Paul et al. Weber	2005/0152			Ashraf et al.
7,524,527	B2 4/2009	Stenzel	2005/0159			Scott et al.
7,547,294	B2 6/2009	Seward	2005/0171			Furst et al.
7,557,087 8,241,249		Rothbard et al.	2005/0182 2005/0186			Lennox Hunter et al.
8,244,344			2005/0191			
8,366,660	B2 2/2013	Wang	2005/0191	333 A1	9/2005	Hsu
8,366,662			2005/0192			Rothbard et al.
8,403,910 8,404,300			2005/0209 2005/0222			Hunter et al. Falotico et al.
8,404,300 8,414,525			2005/0222			Gu et al.
8,414,526			2005/0234			Gu et al.

US 9,248,220 B2

Page 4

(56)	Referen	ices Cited	2007/0276466			Lavelle et al.
II S	PATENT	DOCUMENTS	2007/0282422 2007/0286814		12/2007	Biggs et al. Sawant
0.5.	17111111	DOCOMENTS	2007/0298069	A1	12/2007	Bucay-Couto et al.
2005/0234234 A1		Gu et al.	2008/0021385			Barry et al.
2005/0238584 A1	10/2005	Annapragada et al.	2008/0038307 2008/0082552			Hoffmann Krishnaswamy
2005/0239178 A1 2005/0246009 A1	10/2005	Ruppen et al. Toner et al.	2008/0102033			Speck et al.
2005/0250672 A9		Speck et al.	2008/0102034		5/2008	Speck et al.
2005/0251249 A1	11/2005	Sahatjian et al.	2008/0114331			Holman et al.
2005/0256564 A1		Yang et al.	2008/0118544 2008/0140002		5/2008 6/2008	Wang Ramzipoor et al.
2005/0272758 A1 2005/0278021 A1		Bayever et al. Bates et al.	2008/0175887		7/2008	
2005/0278021 A1 2005/0288481 A1		DesNoyer et al.	2008/0183282		7/2008	
2006/0015170 A1	1/2006	Jones et al.	2008/0194494			Martinez et al.
2006/0020243 A1	1/2006		2008/0215137 2008/0255508		9/2008 10/2008	Epstein et al.
2006/0020331 A1 2006/0040971 A1		Bates et al. Zhu et al.	2008/0255509		10/2008	-
2006/0045901 A1		Weber	2008/0255510		10/2008	Wang
2006/0051392 A1		Heruth et al.	2008/0255658			Cook et al.
2006/0052744 A1		Weber	2008/0262412 2008/0274159		10/2008	Atanasoska et al.
2006/0067977 A1 2006/0094745 A1		Labrecque et al. Ruffolo	2008/0274133			Davis et al.
2006/0034743 A1 2006/0112536 A1		Herweck et al.	2008/0276935		11/2008	Wang
2006/0121117 A1	6/2006	Hunter et al.	2008/0317827			Wright et al.
2006/0121545 A1		Molnar-Kimber et al.	2009/0010987 2009/0011116			Parker et al. Herweck et al.
2006/0127445 A1 2006/0135549 A1		Hunter et al.	2009/0011110			Corbeil et al.
2006/0135550 A1		Graziani et al. Graziani et al.	2009/0069883		3/2009	Ding et al.
2006/0165753 A1		Richard	2009/0076448			Consigny et al.
2006/0173528 A1		Feld et al.	2009/0098176			Helmus et al.
2006/0183766 A1		Boni et al.	2009/0105686 2009/0105687		4/2009 4/2009	Snow et al. Deckman et al.
2006/0184236 A1 2006/0188543 A1	8/2006	Jones et al.	2009/0136560			Bates et al.
2006/0199834 A1	9/2006		2009/0181937			Faucher et al.
2006/0199954 A1		Shaw et al.	2009/0182273		7/2009	
2006/0224237 A1		Furst et al.	2009/0187144 2009/0208552		7/2009	Jayaraman Faucher et al.
2006/0230476 A1 2006/0240113 A1		Atanasoska et al. Hunter et al.	2009/0215882			Bouzada et al.
2006/0257444 A1		Tropsha	2009/0227948			Chen et al.
2006/0257445 A1		Tropsha	2009/0227949			Knapp et al.
2006/0282114 A1	12/2006		2009/0238854 2009/0246252			Pacetti et al. Arps et al.
2007/0003629 A1 2007/0003630 A1		Hunter et al. Hunter et al.	2009/0324682			Popowski
2007/0003030 A1 2007/0020308 A1		Richard et al.	2010/0030183			Toner et al.
2007/0020380 A1	1/2007	Ding	2010/0055294			Wang et al.
2007/0032694 A1		Dinkelborg et al.	2010/0063570 2010/0068170			Pacetti et al. Michal et al.
2007/0050010 A1 2007/0059434 A1		Bates et al. Roorda et al.	2010/0068238			Managoli
2007/0065484 A1		Chudzik et al.	2010/0069838			Weber et al.
2007/0073385 A1	3/2007	Schaeffer et al.	2010/0069879			Michal et al.
2007/0077347 A1		Richter	2010/0081992 2010/0087783			Ehrenreich et al. Weber et al.
2007/0078446 A1 2007/0078513 A1		Lavelle Campbell	2010/0007783			Hoffmann et al.
2007/0078313 A1 2007/0117925 A1		Strickler et al.	2010/0198150		8/2010	Michal et al.
2007/0128118 A1		Yu et al.	2010/0198190			Michal et al.
2007/0142422 A1		Rubino et al.	2010/0209472 2010/0272773		8/2010 10/2010	Wang Kangas et al.
2007/0142772 A1 2007/0142905 A1		Deshmukh et al. Hezi-Yamit et al.	2010/0272773			Stankus et al.
2007/0142903 A1 2007/0150043 A1		Richter	2010/0324645		12/2010	Stankus et al.
2007/0150047 A1	6/2007	Ruane et al.	2010/0331816			Dadino et al.
2007/0161967 A1		Fischer et al.	2011/0054396 2011/0060275			Kangas et al. Christiansen
2007/0162103 A1 2007/0167735 A1		Case et al. Zhong et al.	2011/0129514			Hossainy et al.
2007/0167733 A1 2007/0168012 A1		Ragheb et al.	2011/0137243		6/2011	Hossainy et al.
2007/0184083 A1	8/2007	Coughlin	2011/0143014			Stankus et al.
2007/0190103 A1		Hossainy et al.	2011/0144577 2011/0144578			Stankus et al. Pacetti et al.
2007/0191934 A1 2007/0198080 A1		Blakstvedt et al. Ding et al.	2011/0144378			Escudero et al.
2007/0198080 A1 2007/0212386 A1		Patravale et al.	2011/0152907			Escudero et al.
2007/0212394 A1	9/2007	Reyes et al.	2011/0159169		6/2011	_
2007/0218246 A1	9/2007		2011/0160658		6/2011	
2007/0219642 A1		Richter	2011/0160660		6/2011 7/2011	
2007/0225799 A1 2007/0237803 A1	9/2007 10/2007	Cheng et al.	2011/0166548 2011/0178503			wang Kangas
2007/0244284 A1		Cheng et al.	2011/0190863			Ostroot et al.
2007/0244548 A1	10/2007	Myers et al.	2012/0029426	A1	2/2012	Wang
2007/0264307 A1		Chen et al.	2012/0035530		2/2012	
2007/0265565 A1	11/2007	Johnson	2013/0189190	Al	7/2013	wang

(56) References Cited

U.S. PATENT DOCUMENTS

2013/0189329	A1	7/2013	Wang
2013/0197431	A1	8/2013	Wang
2013/0197434	$\mathbf{A}1$	8/2013	Wang
2013/0197435	A1	8/2013	Wang
2013/0197436	A1	8/2013	Wang
2013/0261603	A1	10/2013	Wang

FOREIGN PATENT DOCUMENTS

EP	1118325 B2	1/2006
EP	1649853 A3	11/2006
EP	1372737 B8	12/2006
EP	1666071	8/2007
EP	1666070 B1	9/2007
EP	1857127 A1	11/2007
EP	1539266 B1	4/2008
EP	1913962 A1	4/2008
EP	1510220 B1	7/2008
EP	1576970 B1	3/2010
EP	1669092 B1	3/2010
EP	1970185 A3	11/2010
EP	1586338 B1	1/2011
EP	2127617 A4	9/2011
EP	1468660 B1	12/2011
WO	2004006976 A1	1/2004
WO	2004026357 A1	4/2004
WO	2004028582 A1	4/2004
WO	2004028610 A3	6/2004
WO	2005011769 A3	4/2005
WO	2006023859 A1	3/2006
WO	2006101573 A1	9/2006
WO	2006124647 A1	11/2006
WO	2006081210 A3	2/2007
WO	2007047416 A3	11/2007
WO	2007079560 A3	12/2007
WO	2007134239 A3	1/2008
WO	2007149161 A3	4/2008
WO	2008114585 A1	9/2008
WO	2007139931 A3	10/2008
WO	2008063576 A3	2/2009
WO	2008003298 A3	7/2009
WO	2008086794 A3	1/2010

OTHER PUBLICATIONS

New England Journal of Medicine, 1995, 332: 1004-1014.

Rowinsky, E. K., et al., "Drug therapy: paclitaxel (taxol)", Review Article, N Engl J Med, vol. 332, No. 15, pp. 1004-1014, (1995).

PPD "Evaluation of Butanol-Buffer Distribution Properties of C6-Ceraminde." PPD Project No. 7557-001, Aug. 20, 2008, pp. 1-14. Prashant N. Chhajed et al., "Patterns of Pulmonary Complications Associated with Sirolimus," Respiration: International Review of Thoracic Diseases, vol. 73, No. 3, Mar. 2006, at pp. 367-374.

Sangster, James, "Octanol-Water Partition Coefficients: Fundamentals and Physical Chemistry", Wiley Series in Solution Chemistry vol. 2, Chichester: John Wiley & Sons, vol. 2, Chapter 1 (1997).

Scheller et al., Paclitaxel Balloon Coating, a Novel Method for Prevention and Therapy of Restenosis, Circulation 2004;110;810-814; originally published online Aug. 9, 2004.

Seymour R. Halpin SF et al., "Corticosteroid prophylaxis for patients with increased risk of adverse reactions to intravascular contrast agents: a survey of current practice in the UK," Department of Radiology, University Hospital of Wales, Heath Park, Cardiff, Clinical Radiology (1994), 49, pp. 791-795.

Toshimitsu Konno, M.D., et al., "Selective targeting of anti-cancer drug and simultaneous imaging enhancement in solid tumors by arterially administered lipid contrast medium," Cancer 54:2367-2374, 1984.

Yushmanov, et al., "Dipyridamole Interacts with the Polar Part of Cationic Reversed Micelles in Chloroform: 1H NMR and ESR Evidence", J. Colloid Interface Sci., vol. 191(2), pp. 384-390 (1997).

Baumbach et al., "Local Drug Delivery: Impact of Pressure Substance Characteristics, and Stenting on Drug Transfer Into the Arterial Wall," Catheterization and Cardiovascular Interventions, vol. 47, pp. 102-106 (1999).

Charles et al., "Ceramide-Coated Balloon Catheters Limit

Charles et al., "Ceramide-Coated Balloon Catheters Limit Neointimal Hyperplasia After Stretch Injury in Carotid Arteries," Circulation Research published by the American Heart Association, 87, pp. 282-288 (2000).

Chun Li, et al, "Synthesis, Biodistribution and Imaging Properties of Indium-111-DTPA-Paclitaxel in Mice Bearing Mammary Tumors," The Journal of Nuclear Medicine, vol. 38, No. 7, Jul. 1997, 1042-1047

Creel, C.J., et al., "Arterial Paclitaxel Distribution and Deposition", Circ Res, vol. 86, pp. 879-884 (2000).

D. M. Long et al., "Perflurocarbon Compounds As X-Ray Contrast Media in the Lungs," Bulletin de la Societe Internationale De Chirurgie, vol. 2, 1975, 137-141.

D.M. Jackson et al., "Current usage of contract agents, anticoagulant and antiplatelet drugs in angiography and angioplasty in the UK," Department of Diagnostic Radiology, Hammersmith Hospital, London, UK, Clinical Radiology (1995), 50, pp. 699-704.

English Language Abstract for DE 101 15 740, Oct. 2, 2002

English Language Abstract for EP 1 372 737 A2, Jan. 20, 2004.

English Language Abstract for EP 1 539 266 Al, Jun. 15, 2005.

English Language Abstract for EP 1 539 267, Jun. 15, 2005.

English Language Abstract for EP 1 666 070 Al, Jun. 7, 2006.

English Language Abstract for EP 1 669 092 A1, Jun. 14, 2006.

English Language Abstract for EP 1 857 127, Nov. 21, 2007. English Language Abstract for WO 021076509, Oct. 3, 2002.

English Language Abstract for WO 2004/028582, Apr. 8, 2004.

English Language Abstract for WO 2004/028382, Apr. 8, 2004. English Language Abstract for WO 2004/028610, Apr. 8, 2004.

English Language Abstract for WO 2008/003298 A2, Jan. 10, 2008.

English Language Abstract for WO 2008/086794, Jul. 24, 2008.

European Search Report for EP 09156858, Jul. 21, 2009.

European Search Report for EP 09160605, Jul. 20, 2009. European Search Report for EP 10168411, Nov. 30, 2010.

European Search Report for EP 10168412, Nov. 30, 2010.

European Search Report for EP 10189393, Apr. 4, 2011.

Gyula Ostoros et al., "Fatal Pulmonary Fibrosis Induced Paclitaxel: A Case Report and Review of the Literature," International Journal of Gynecological Cancer, vol. 16, Suppl. 1, Jan. 2006, at pp. 391-393. Gyula Ostoros et al., "Paclitaxel Induced Pulmonary Fibrosis," Lung Cancer, Elsevier, Amsterdam, NL, vol. 41, Aug. 1, 2003, at p. S280. Herdeg et al., "Paclitaxel: Ein Chemotherapeuticum zum Restenoseprophylaxe? Experimentell Untersuchungen in vitro and in vivo," Z Kardiol, vol. 89 (2000) pp. 390-397.

Hershberger et al "Calcitriol (1, 25-dihydroxy cholecalciferol) Enhances Paclitaxel Antitumor Activity in Vitro and in Vivo and Accelerates Paclitaxel-Induced Apoptosis," Clin. Can. Res. 7: 1043-1051 (Apr. 2001).

International Search Report for International Application No. PCT/US2007/024116, Nov. 20, 2008.

International Search Report for International Application No. PCT/US2007/024108, Aug. 7, 2008.

International Search Report for International Application No. PCT/US2008/006415, May 20, 2008.

International Search Report for International Application No. PCT/US2008/006348, May 16, 2008.

International Search Report for International Application No. PCT/US2008/006417, May 20, 2008.

International Search Report for International Application No. PCT/US2008/007177, Sep. 16, 2008.

International Search Report for International Application No. PCT/US2008/007177, Dec. 2, 2008.

International Search Report for International Application No. PCT/

US2008/006348, Nov. 26, 2008. International Search Report for International Application No. PCT/

US2008/006348, Jan. 28, 2009. International Search Report for International Application No. PCT/

US2008/006415, Nov. 24, 2008. International Search Report for International Application No. PCT/

US2008/006417, Nov. 24, 2008.

International Search Report for International Application No. PCT/US2009/004868, Jan. 4, 2010.

(56) References Cited

OTHER PUBLICATIONS

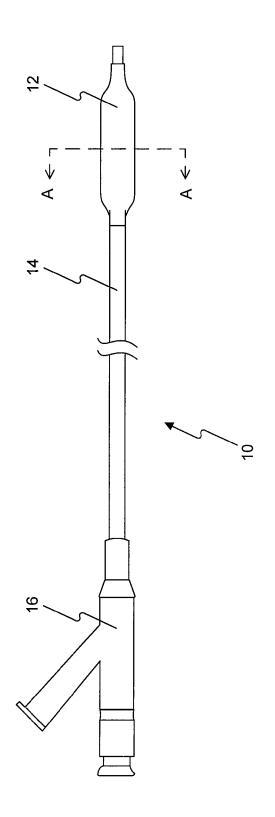
International Search Report for International Application No. PCT/ US2009/004868, Jan. 1, 2010.

International Search Report for International Application No. PCT/US2009/004868, May 21, 2010.

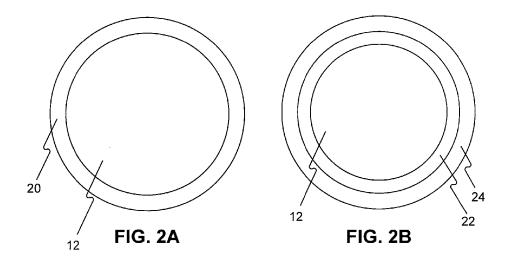
International Search Report for International Application No. PCT/US2010/028599, Dec. 21, 2010.

J.F. Mitchel et al., "Inhibition of Platelet Deposition and Lysis of Intracoronary Thrombus During Balloon Angioplasty Using Urokinase-Coated Hydrogel Balloons." Circulation 90, (Oct. 1994), pp. 1979-1988.

J.H. Baron, et al., "In vitro evaluation of c7E3-Fab (ReoPro) eluting polymer-coated coronary stents." Cardiovascular Research, 46 (2000) pp. 585-594.


"Literature Alerts", Journal of Microencapsulation, vol. 17, No. 6, pp. 789-799 (2000).

K. Kandarpa et al., "Mural Delivery of Iloprost with Use of Hydrogel-coated Balloon Catheters Suppresses Local Platelet Aggregation." J. Vasc. Interv. Radiol. 8, pp. 997-1004, Nov./Dec. 1997.


K. Kandarpa et al., "Site-specific Delivery of Iloprost during Experimental Angioplasty Suppresses Smooth Muscle Cell Proliferation." J. Vasc. Interv. Radiol. 9, pp. 487-493, (1998).

Ken Iwai, et al., "Use of oily contrast medium for selective drug targeting to tumor: Enhanced therapeutic effect and Xray image," Cancer Research, 44, 2115-2121, May 1994.

Laure Champion et al., "Brief Communication: Sirolimus-Associated Pneumonitis: 24 Cases in Renal Transplant Recipients," Annals of Internal Medicine, vol. 144, No. 7, Apr. 4, 2006, at pp. 505-509. Leo, A., et al., "Partition coefficients and their uses." Chem Rev, vol. 71 (6), pp. 525-537 (1971).

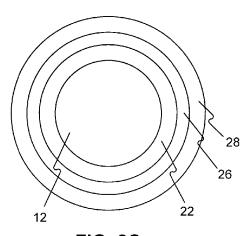


FIG. 2C

MEDICAL DEVICE RAPID DRUG RELEASING COATINGS COMPRISING A THERAPEUTIC AGENT AND A CONTRAST AGENT

CROSS REFERENCES TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 13/846,078, filed Mar. 18, 2013, which is a continuation 10 of U.S. application Ser. No. 12/123,956, filed May 20, 2008, which is a continuation-in-part of application Ser. No. 11/942,452, filed Nov. 19, 2007, which claims the benefit of priority of U.S. Provisional Application No. 60/860,084, filed on Nov. 20, 2006, U.S. Provisional Application No. 60/880, 742, filed Jan. 17, 2007, U.S. Provisional Application No. 60/897,427, filed on Jan. 25, 2007, U.S. Provisional Application No. 60/903,529 filed on Feb. 26, 2007, U.S. Provisional Application No. 60/904,473 filed Mar. 2, 2007, U.S. Provisional Application No. 60/926,850 filed Apr. 30, 2007, U.S. ²⁰ Provisional Application No. 60/981,380 filed Oct. 19, 2007, and U.S. Provisional Application No. 60/981,384 filed Oct. 19, 2007, the disclosures of all of which are incorporated by reference herein.

FIELD OF THE INVENTION

Embodiments of the present invention relate to coated medical devices, and particularly to coated balloon catheters, and their use for rapidly delivering a therapeutic agent to particular tissue or body lumen, for treatment of disease and particularly for reducing stenosis and late lumen loss of a body lumen. Embodiments of the present invention also relate to methods of manufacturing these medical devices, the drug releasing coatings of therapeutic agent and contrast agent provided on these medical devices, the solutions for making those coatings, and methods for treating a body lumen such as the vasculature, including particularly arterial vasculature, for example, using these coated medical devices.

BACKGROUND OF THE INVENTION

It has become increasingly common to treat a variety of medical conditions by introducing a medical device into the vascular system or other lumen within a human or veterinary 45 patient such as the esophagus, trachea, colon, biliary tract, or urinary tract. For example, medical devices used for the treatment of vascular disease include stents, catheters, balloon catheters, guide wires, cannulas and the like. While these medical devices initially appear successful, the benefits are 50 often compromised by the occurrence of complications, such as late thrombosis, or recurrence of disease, such as stenosis (restenosis), after such treatment.

Restenosis, for example, involves a physiological response to the vascular injury caused by angioplasty. Over time, deendotheliazation and injury to smooth muscle cells results in thrombus deposition, leukocyte and macrophage infiltration, smooth muscle cell proliferation/migration, fibrosis and extracellular matrix deposition. Inflammation plays a pivotal role linking early vascular injury to the eventual consequence of neointimal growth and lumen compromise. In ballooninjured arteries, leukocyte recruitment is confined to early neutrophil infiltration, while in stented arteries, early neutrophil recruitment is followed by prolonged macrophage accumulation. The widespread use of coronary stents has altered the vascular response to injury by causing a more intense and prolonged inflammatory state, due to chronic irritation from

2

the implanted foreign body, and in the case of drug eluting stents (DES), from insufficient biocompatibility of the polymer coating.

Over the past several years, numerous local drug delivery systems have been developed for the treatment and/or the prevention of restenosis after balloon angioplasty or stenting. Examples include local drug delivery catheters, delivery balloon catheters, and polymeric drug coated stents. Given that many diseases affect a specific local site or organ within the body, it is advantageous to preferentially treat only the affected area. This avoids high systemic drug levels, which may result in adverse side effects, and concentrates therapeutic agents in the local area where they are needed. By treating just the diseased tissue, the total quantity of drug used may be significantly reduced. Moreover, local drug delivery may allow for the use of certain effective therapeutic agents, which have previously been considered too toxic or non-specific to use systemically.

One example of a local delivery system is a drug eluting stent (DES). The stent is coated with a polymer into which drug is impregnated. When the stent is inserted into a blood vessel, the polymer degrades and the drug is slowly released. The slow release of the drug, which takes place over a period of weeks to months, has been reported as one of the main advantages of using DES. However, while slow release may be advantageous in the case where a foreign body, such as a stent, is deployed, which is a source of chronic irritation and inflammation, if a foreign body is not implanted it is instead advantageous to rapidly deliver drug to the vascular tissue at the time of treatment to inhibit inflammation and cellular proliferation following acute injury. Thus, a considerable disadvantage of a DES, or any other implanted medical device designed for sustained release of a drug, is that the drug is incapable of being rapidly released into the vessel.

Additionally, while drug-eluting stents were initially shown to be an effective technique for reducing and preventing restenosis, recently their efficacy and safety have been questioned. A life-threatening complication of the technology, late thrombosis, has emerged as a major concern. Drug 40 eluting stents cause substantial impairment of arterial healing, characterized by a lack of complete re-endothelialization and a persistence of fibrin when compared to bare metal stents (BMS), which is understood to be the underlying cause of late DES thrombosis. Concerns have also been raised that the polymeric matrix on the stent in which the anti-proliferative drug is embedded might exacerbate inflammation and thrombosis, since the polymers used are not sufficiently biocompatible. These polymeric systems are designed to facilitate long-term sustained release of drug over a period of days, months, or years, not over a period of seconds or minutes. These polymeric drug coatings of medical devices do not release the polymer, which remains on the device even after drug is released. Even if biodegradable polymers are used, polymer and drug are not released at the same time. Rapid release of drug, an intent of embodiments of the present invention, from these polymeric systems is not possible. Thus, combining a therapeutic agent with a polymer in a medical device coating may have significant disadvantages.

Another important limitation of the DES is that the water insoluble drugs are not evenly distributed in the polymeric matrix of the coating. Furthermore, drug and polymer are concentrated on the struts of the stent, but not in gaps between the struts. The non-uniform distribution of drug causes non-uniform drug release to the tissue of the vessel walls. This may cause tissue damage and thrombosis in areas exposed to excess drug and hyperplasia and restenosis areas that are undertreated. Thus, there is a need to improve the uniformity

of drug delivery to target tissues by improving drug solubility in coatings of medical devices by increasing the drug's compatibility with carriers in the coatings, such as a polymeric matrix, thereby eliminating or reducing the size of drug crystal particles in the polymeric matrix or other coating to create a uniform drug distribution in the drug coating on the medical device.

Yet another important limitation of the DES is that only a limited amount of an active agent can be loaded into the relatively small surface area of the stent.

Non-stent based local delivery systems, such as balloon catheters, have also been effective in the treatment and prevention of restenosis. The balloon is coated with an active agent, and when the blood vessel is dilated, the balloon is pressed against the vessel wall to deliver the active agent. 15 Thus, when balloon catheters are used, it is advantageous for the drug in the coating to be rapidly released and absorbed by blood vessel tissues. Any component of the coating that inhibits rapid release, such as a crosslinked polymer, liposome, or encapsulating particle, is necessarily disadvantageous to the 20 intended use of the balloon catheter, which is inflated for a very brief period of time and then removed from the body.

Hydrophilic drugs, such as heparin, have been reported to be deliverable by polymeric hydrogel coated balloon catheters. However, a polymeric hydrogel coating can not effectively deliver water insoluble drugs (such as paclitaxel and rapamycin), because they can not mix with the hydrogel coating. Furthermore, the cross-linked polymeric hydrogel remains on the balloon after drug is released

Alternatively, balloon catheters are reported to have been coated with hydrophobic therapeutic agents that have been encapsulated in particles such as micelles, liposomes, nanoparticles or polymers. Liposomes, which usually contain a core of aqueous solution, and micelles, which do not, have both been reported to be useful for pharmaceutical preparations of water-insoluble drugs for venous injection. However, for purposes of a medical device coating, all of these drug delivery formulations have significant disadvantages: drug loading is poor, and drug release from these preparations is slow.

Oils and lipids mix well with water-insoluble drugs such as paclitaxel or rapamycin, but when micelles or liposomes are then formed by interaction with aqueous media, the particles and particle sizes are relatively unstable, ranging in a broad particle size distribution from several hundred nanometers to 45 several microns in diameter. Several reports suggest that the maximal concentration ratio of drug to lipid that can be stably achieved in these particles is in the range of 0.2 to 0.3; it is often less than 0.1.

Another disadvantage of oil-based liposome formulations 50 is the dependence of drug absorption on the rate and extent of lipolysis. Lipolysis of oil-based triglycerides is difficult and dependent upon many factors, and triglycerides must be digested and drug released in order to be absorbed by diseased tissue. The amount of hydrophobic drug delivered to tissues 55 by these agents will be low, because liposomes and micelles cannot efficiently release hydrophobic drug, which they carry away before it can be absorbed by tissues. Micelles, liposomes, or particles of oils and lipids are therefore not effective at rapidly and efficiently facilitating tissue uptake of drug during a very brief device deployment time, and no report has shown these types of coatings to be effective.

Loading capacity of conventional micelles and liposomes is low. In the absence of other considerations, the highest achievable drug to lipid ratio is advantageous, since high lipid 65 doses may raise concerns of toxicity, and it is the drug—not the lipid—that provides the therapeutic benefit, once it is

4

delivered to target tissue. The ratio of drug to lipid in these formulations is often less than 0.1 and almost always less than 0.2-0.3, because a significantly higher concentration of lipid than drug is required in order for the drug to be encapsulated in the particles, miscelles, or liposomes. Formulation stability is highly dependent on drug-lipid interactions that are concentration dependent. "In many studies, a maximum of 3 to 4 mol % drug (with respect to phospholipid) possess stability of sufficient duration as to be clinically useable. 8 mol % paclitaxel liposomes may be physically stable for 15 min or less"-Preparation and Characterization of Taxane-Containing Liposomes. Methods Enzymol. 2005; 391:97-117, p. 101-2. Several attempts to achieve drug to lipid concentration ratios higher than 0.2-0.3 failed (for example, see PDA JPharm Sci Technol 2006 60(3):144-55). These technologies involve forming the drug/lipid particles first and then coating medical devices with the prepared particles. Liposomes, for example, are prepared by first mixing drug and lipid in organic solvent, then removing the organic solvent to form a lipid film or cake, then hydrating with aqueous solution and sonicating.

There are several reports showing that drug release from liposomal, miscellar, or particular oil/lipid formulations occurs very slowly, in the range of days to weeks or months. In addition, the inventor has found that drug release occurs far too slowly from a coating consisting essentially of just oil/ lipid and lipophilic drug, because they bind to each other and to the external surface of the medical device so tightly that the drug cannot rapidly elute off the device during several minutes or less of deployment at the target site. This slow-releasing property of prior approaches to drug:oil, drug:fatty acid, and drug:lipid formulations is not desirable in embodiments of the present inventions, wherein drug release takes place in the range of seconds to minutes. Thus the technology for oil/lipid formulation needs to be improved significantly in order to be useful in the rapid drug release coatings for medical devices of the present invention.

Drug that is encapsulated in polymeric particles may take even longer to diffuse from the coating (the reported range is months to years) and will have further difficulty permeating target tissues rapidly. Microspheres formed with polymeric materials, such as polyesters, when used to encapsulate water insoluble drugs, are unable to release the drug until the polymeric material is degraded. Thus, these polymeric microspheres are useful for sustained release of drug over a long period of time but cannot rapidly release drug and facilitate tissue uptake.

The iodine contrast agent iopromide has been used with paclitaxel to coat balloon catheters and has had some variable success in the treatment of restenosis. Notwithstanding this result, prior approaches to coating formulations with iodine contrast agent and a lipophilic or water-insoluble therapeutic agent have serious drawbacks. The physical characteristics of these coatings are very poor. There is a several-fold variability in drug levels in tissue after treatment, which results in inconsistent therapeutic outcomes.

Experimentally, the present inventor has found that the compatability or miscibility of lipophilic or water-insoluble therapeutic agents and iodine contrast agents is not good, and the integrity and uniformity of the coating is very poor. Particles from the coating easily flake off and are lost during handling. When the coating consists essentially of iopromide and paclitaxel, for example, there is experimentally several-fold variability in drug concentration distribution on the surface of the medical device. Furthermore, there is marked variability in adhesion of drug to the surface of the device, and clumps of contrast agent and drug of variable size are formed that easily flake off the device during minimal handling in the

interventional cardiology suite. These deficiencies adversely affect the consistency and uniformity of drug delivery to target tissues, which results in highly variable and inconsistent therapeutic effects and decreased therapeutic utility of the coated device. Improved coatings are therefore needed, coatings that maintain integrity during handling and more effectively and uniformly deliver drug and facilitate its absorption by tissue.

Thus, the technology for formulating coatings of contrast agent and drug needs to be improved significantly in order to achieve consistent therapeutic results and to improve the clinical utility of the rapid drug release coatings for medical devices.

Combining drugs and medical devices is a complicated area of technology. It involves the usual formulation chal- 15 lenges, such as those of oral or injectable pharmaceuticals, together with the added challenge of maintaining drug adherence to the medical device until it reaches the target site and subsequently delivering the drug to the target tissues with the desired release and absorption kinetics. Drug coatings of 20 medical devices must also have properties such that they do not crack upon expansion and contraction of the device, for example, of a balloon catheter or a stent. Furthermore, coatings must not impair functional performance such as burst pressure and compliance of balloons or the radial strength of 25 self- or balloon-expanded stents. The coating thickness must also be kept to a minimum, since a thick coating would increase the medical device's profile and lead to poor trackability and deliverability. These coatings generally contain almost no liquid chemicals, which typically are often used to 30 stabilize drugs. Thus, formulations that are effective with pills or injectables might not work at all with coatings of medical device. If the drug releases from the device too easily, it may be lost during device delivery before it can be deployed at the target site, or it may burst off the device during the initial 35 phase of inflation and wash away before being pressed into contact with target tissue of a body lumen wall. If the drug adheres too strongly, the device may be withdrawn before the drug can be released and absorbed by tissues at the target

Thus, there is still a need to develop improved coatings of therapeutic agent and contrast agent for medical devices that rapidly, uniformly, and consistently deliver therapeutic agent directly into a localized tissue area during or following a medical procedure, during a brief 0.1 to 2 minute deployment of the device at the target site, so as to treat or prevent vascular and nonvascular diseases such as stenosis. There is still a need to develop coatings with improved compatability of contrast agent and lipophilic or water insoluble drug. There is still a need to develop coatings that preserve coating integrity and uniformity of drug distribution and that diminish the propensity for particles to flake off from the coating during handling. And there is still a need to develop coatings of contrast agent and drug that result in more uniform and consistent delivery of drug to target tissue.

Thus, the technology for formulating medical device coatings of contrast agent and therapeutic agent needs to be improved significantly in order to achieve consistent therapeutic results and to improve the clinical utility of the coated medical devices, which is an object of embodiments of the 60 present invention.

SUMMARY OF THE INVENTION

The present inventor has found that coating the exterior 65 surface of a medical device, and particularly of a balloon catheter or a stent, for example, with a layer comprising a

6

lipophilic or water-insoluble therapeutic agent, a contrast agent, and an additive that has both a hydrophilic part and a drug affinity part is useful in solving the problems associated with the coatings discussed above. The drug affinity part is a hydrophobic part and/or has an affinity to the therapeutic agent by hydrogen bonding and/or van der Waals interactions. The hydrophilic part has a very good compatibility or miscibility with the hydrophilic contrast agent. In some embodiments, the additive includes surfactants. In embodiments of the present invention, the surfactant is an ionic or non-ionic surfactant. In another embodiment, the surfactant is an aliphatic or aromatic surfactant.

Surprisingly, the present inventor has found that the at least one additive according to embodiments of the present invention, which comprises a hydrophilic part and a drug affinity part, in combination with a lipophilic or water-insoluble therapeutic agent and a contrast agent, forms an effective drug delivery coating on a medical device that avoids the disadvantages of conventional liposomal or encapsulation based coating formulations such as slow release, lipolysis dependence, and a very low limit to drug:lipid concentration ratio. Moreover, the coatings according to embodiments of the present invention avoid the disadvantages of prior formulation technologies for coatings of contrast agent and lipophilic or water-insoluble drug, such as the inability to preserve coating integrity and uniformity of drug distribution, and the unavoidable flaking off of particles from the coating during handling.

The present inventor has also found that coating the exterior surface of a medical device, and particularly of a balloon catheter or a stent, for example, with a layer comprising a lipophilic or water-insoluble therapeutic agent, a contrast agent, and one of an oil, a fatty acid, and a lipid, wherein the therapeutic agent is not enclosed in liposomes or particles, is also useful in solving the problems associated with the coatings discussed above.

The coatings according to embodiments of the present invention have improved resistance to mechanical disruption, improved preservation of coating integrity and uniformity of drug distribution, and diminished propensity for coating particles to flake off during handling of the device.

The coatings according to embodiments of the present invention also facilitate rapid, uniform, and consistent drug elution off of the surface of the device and superior permeation of drug into tissues at a disease site to treat disease. For example, to treat stenosis and to reduce restenosis and late lumen loss of a body lumen. Thus, coatings according to embodiments of the present invention provide an enhanced rate and/or consistency and/or uniformity and/or extent of absorption of the lipophilic or water-insoluble therapeutic agent in diseased tissues of the vasculature or other body lumen.

In embodiments of the present invention, the coated device is for reducing stenosis and late lumen loss of a body lumen. In embodiments of the present invention, the coated device improves consistency or decreases variability of drug uptake by tissue. In embodiments of the present invention, the coated device improves consistency or decreases variability of the

therapeutic outcome or clinical result of the treatment.

In one embodiment, the present invention relates to a medical device for delivering a therapeutic agent to a tissue for reducing stenosis and late lumen loss of a body lumen, the device comprising a layer overlying an exterior surface of the medical device. The device includes one of a balloon catheter, a perfusion balloon catheter, an infusion catheter such as distal perforated drug infusion tube, a perforated balloon, spaced double balloon, porous balloon, and weeping balloon,

a cutting balloon catheter, a scoring balloon catheter, a laser catheter, an atherectomy device, a debulking catheter, a stent, a filter, a stent graft, a covered stent, a patch, a wire, and a valve. Further, the tissue includes tissue of one of coronary vasculature, peripheral vasculature, cerebral vasculature, esophagus, airways, sinus, trachea, colon, biliary tract, urinary tract, prostate, and brain passages.

In one embodiment of the medical device, the layer overlying the exterior surface of the medical device comprises a therapeutic agent, a contrast agent and an additive, wherein the contrast agent is chosen from iobitridol, iohexol, iomeprol, iopamidol, iopentol, iopromide, ioversol, ioxilan, iotrolan, iodixanol, ioxaglate, and their derivatives.

In one embodiment of the medical device, the layer overlying the exterior surface of the medical device comprises a 15 lipophilic or water-insoluble therapeutic agent, a contrast agent, and one of an oil, a fatty acid, and a lipid. In one embodiment, the therapeutic agent is not encapsulated in liposomes or particles.

In one embodiment of the medical device, the layer overlying the exterior surface of the medical device comprises a lipophilic or water-insoluble therapeutic agent, a contrast agent, and an additive, wherein the additive has both a hydrophilic part and a drug affinity part, wherein the drug affinity part is at least one of a hydrophobic part, a part that has affinity to the therapeutic agent by hydrogen bonding and/or charge and/or van der Waals interactions.

In one embodiment the present invention relates to a medical device for delivering a therapeutic agent to a tissue, the device comprising a layer overlying the exterior surface of the 30 medical device, the layer comprising a lipophilic or waterinsoluble therapeutic agent, a contrast agent, and an additive, wherein the additive comprises a hydrophilic part and a drug affinity part, wherein the drug affinity part is a hydrophobic part, a part that has an affinity to the therapeutic agent by 35 hydrogen bonding, and a part that has an affinity to the therapeutic agent by van der Waals interactions, wherein the additive is water-soluble, and wherein the additive is at least one of a surfactant and a chemical compound. In one embodiment, the surfactant improves compatibility and miscibility 40 of the lipophilic or water-insoluble drug and the hydrophilic contrast agent. In one embodiment, the layer overlying the exterior surface of the medical device consists essentially of the therapeutic agent, the contrast agent, and the additive.

In one embodiment, the layer overlying the exterior surface 45 of the medical device includes the therapeutic agent, a contrast agent, and an additive, but does not include a polymer.

In one embodiment, the additive in the layer comprising the therapeutic agent, a contrast agent, and an additive is an ionic or non-ionic surfactant. In another embodiment, the additive 50 is an aliphatic or aromatic surfactant. In another embodiment, the additive is a chemical compound with one or more hydroxyl, amino, carbonyl, carboxyl, acid, amide, ester moieties thereof.

In another embodiment, the additive is a chemical compound with one or more hydroxyl, amino, carbonyl, carboxyl, acid, amide, or ester moieties with a molecular weight of less than 5,000-10,000, preferably less than 1000-5,000, more preferably less than 750-1,000, or most preferably less than 750. In this embodiment, molecular weight of the additive is preferred to be less than that of the drug to be delivered. Small molecules can diffuse quickly, and they easily release from the surface of the delivery balloon, carrying drug with them. They quickly diffuse away from drug when the drug binds tissue. The molecular weight of the additives can not be too 65 low, however; additives with molecular weight less than 80 are not desirable because they evaporate easily and are not

8

stable components of the coating. In another embodiment, the additive is hydroxyl ketone, hydroxyl lactone, hydroxyl acid, hydroxyl ester, or hydroxyl amide. In another embodiment, the additive is gluconolactone or ribonic acid lactone thereof. In yet another embodiment, the additive is chosen from meglumine/lactic acid, meglumine/gentisic acid, meglumine/acetic acid, lactobionic acid, Tween 20/sorbitol, Tween 20/lactobionic acid, Tween 20/sugar or sugar derivatives. and N-octanoyl N-methylglucamine. In another embodiment, the additive is a vitamin or derivative thereof. In another embodiment, the additive is a protein or derivative thereof. In another embodiment, the additive is an albumin

In one embodiment, the layer overlying the exterior surface of the medical device does not include an oil, a lipid, or a polymer. In another embodiment, the layer overlying the exterior surface of the medical device does not include an oil. In another embodiment, the layer overlying the exterior surface of the medical device does not include a polymer. In another embodiment, the layer overlying the exterior surface of the medical device does not include a purely hydrophobic additive. In another embodiment, the layer overlying the exterior surface of the medical device does not include salicylic acid or salts thereof. In yet another embodiment, the layer overlying the exterior surface of the medical device does not include sodium salicylate.

In yet another embodiment, the layer overlying the exterior surface of the medical device does not include liposomes or encapsulating particles. In another embodiment, the layer overlying the exterior surface of the medical device includes one of an oil, fatty acid, and lipid.

In one embodiment, the additive in the layer comprising the therapeutic agent, the contrast agent and the additive is an ionic or non-ionic surfactant. In another embodiment, the additive is an aliphatic or aromatic surfactant. In yet another embodiment, the additive is chosen from sorbitan oleate and sorbitan fatty esters.

In another embodiment, the additive is soluble in an aqueous solvent and is soluble in an organic solvent.

In one embodiment, the additive in the layer comprising the therapeutic agent, contrast agent and the additive is chosen from PEG fatty esters, PEG omega-3 fatty esters and alcohols, glycerol fatty esters, sorbitan fatty esters, PEG glyceryl fatty esters, PEG sorbitan fatty esters, sugar fatty esters, PEG sugar esters, vitamins and derivatives.

In one embodiment, the contrast agent in the layer overlying an exterior surface of the medical device is chosen from iobitridol, iohexol, iomeprol, iopamidol, iopentol, iopromide, ioversol, ioxilan, iotrolan, iodixanol, ioxaglate, and their derivatives. In one embodiment, the chemical compound in the layer overlying an exterior surface of the medical device is chosen from amino alcohols, hydroxyl carboxylic acid, ester, anhydrides, hydroxyl ketone, hydroxyl lactone, hydroxyl ester, sugar phosphate, sugar sulfate, ethyl oxide, ethyl glycols, amino acids, peptides, proteins, sorbitan, glycerol, polyalcohol, phosphates, sulfates, organic acids, esters, salts, vitamins, combinations of amino alcohol and organic acid, and their substituted molecules. In one embodiment, the surfactant in the layer overlying an exterior surface of the medical device is chosen from ionic, nonionic, aliphatic, and aromatic surfactants, PEG fatty esters, PEG omega-3 fatty esters, ether, and alcohols, glycerol fatty esters, sorbitan fatty esters, PEG glyceryl fatty esters, PEG sorbitan fatty esters, sugar fatty esters, PEG sugar esters, and derivatives thereof.

In one embodiment, the chemical compound in the layer overlying an exterior surface of the medical device has one or more hydroxyl, amino, carbonyl, carboxyl, acid, amide or

ester groups. In one aspect of this embodiment, the chemical compound having one or more hydroxyl, amino, carbonyl, carboxyl, acid, amide or ester groups is chosen from amino alcohols, hydroxyl carboxylic acid, ester, anhydrides, hydroxyl ketone, hydroxyl lactone, hydroxyl ester, sugar 5 phosphate, sugar sulfate, ethyl oxide, ethyl glycols, amino acids, peptides, proteins, sorbitan, glycerol, polyalcohol, phosphates, sulfates, organic acids, esters, salts, vitamins, combinations of amino alcohol and organic acid, and their substituted molecules.

In another embodiment, the additive in the layer comprising the therapeutic agent, the contrast agent, and the additive is chosen from p-isononylphenoxypolyglycidol, PEG laurate, Tween 20, Tween 40, Tween 60, PEG oleate, PEG stearate, PEG glyceryl laurate, PEG glyceryl oleate, PEG glyceryl 15 stearate, polyglyceryl laurate, plyglyceryl oleate, polyglyceryl myristate, polyglyceryl palmitate, polyglyceryl-6 laurate, plyglyceryl-6 oleate, polyglyceryl-6 myristate, polyglyceryl-6 palmitate, polyglyceryl-10 laurate, plyglyceryl-10 oleate, polyglyceryl-10 myristate, polyglyceryl-10 palmitate 20 PEG sorbitan monolaurate, PEG sorbitan monolaurate, PEG sorbitan monooleate, PEG sorbitan stearate, PEG oleyl ether, PEG laurayl ether, octoxynol, monoxynol, tyloxapol, sucrose monopalmitate, sucrose monolaurate, decanoyl-N-methylglucamide, n-decyl-β-D-glucopyranoside, n-decyl-β-D-mal- 25 topyranoside, n-dodecyl-β-D-glucopyranoside, n-dodecylβ-D-maltoside, heptanoyl-N-methylglucamide, n-heptyl-β-D-glucopyranoside, n-heptyl-β-D-thioglucoside, n-hexyl-β-D-glucopyranoside, nonanoyl-N-methylglucamide, n-noylβ-D-glucopyranoside, octanoyl-N-methylglucamide, 30 n-octyl-β-D-glucopyranoside, octyl-β-D-thioglucopyranoside; cystine, tyrosine, tryptophan, leucine, isoleucine, phenylalanine, asparagine, aspartic acid, glutamic acid, and methionine; acetic anhydride, benzoic anhydride, ascorbic acid, 2-pyrrolidone-5-carboxylic acid, sodium pyrrolidone 35 carboxylate, ethylenediaminetetraacetic dianhydride, maleic and anhydride, succinic anhydride, diglycolic anhydride, glutaric anhydride, acetiamine, benfotiamine, pantothenic acid; cetotiamine; cycothiamine, dexpanthenol, niacinamide, nicotinic acid, pyridoxal 5-phosphate, nicotinamide ascorbate, 40 riboflavin, riboflavin phosphate, thiamine, folic acid, menadiol diphosphate, menadione sodium bisulfite, menadoxime, vitamin B12, vitamin K5, vitamin K6, vitamin K6, and vitamin U; albumin, immunoglobulins, caseins, hemoglobins, lysozymes, immunoglobins, a-2-macroglobulin, fibronec- 45 tins, vitronectins, firbinogens, lipases, benzalkonium chloride, benzethonium chloride, docecyl trimethyl ammonium bromide, sodium docecylsulfates, dialkyl methylbenzyl ammonium chloride, and dialkylesters of sodium sulfonsuccinic acid, L-ascorbic acid and its salt, D-glucoascorbic acid 50 and its salt, tromethamine, triethanolamine, diethanolamine, meglumine, glucamine, amine alcohols, glucoheptonic acid, glucomic acid, hydroxyl ketone, hydroxyl lactone, gluconolactone, glucoheptonolactone, glucooctanoic lactone. gulonic acid lactone, mannoic lactone, ribonic acid lactone, 55 lactobionic acid, glucosamine, glutamic acid, benzyl alcohol, benzoic acid, hydroxybenzoic acid, propyl 4-hydroxybenzoate, lysine acetate salt, gentisic acid, lactobionic acid, lactitol, sinapic acid, vanillic acid, vanillin, methyl paraben, propyl paraben, sorbitol, xylitol, cyclodextrin, (2-hydrox- 60 ypropyl)-cyclodextrin, acetaminophen, ibuprofen, retinoic acid, lysine acetate, gentisic acid, catechin, catechin gallate, tiletamine, ketamine, propofol, lactic acids, acetic acid, salts of any organic acid and organic amine, polyglycidol, glycerol, multiglycerols, galactitol, di(ethylene glycol), tri(ethyl- 65 ene glycol), tetra(ethylene glycol), penta(ethylene glycol), poly(ethylene glycol) oligomers, di(propylene glycol), tri

10

(propylene glycol), tetra(propylene glycol, and penta(propylene glycol), poly(propylene glycol) oligomers, a block copolymer of polyethylene glycol and polypropylene glycol, and derivatives and combinations thereof.

In another embodiment, the additive in the layer comprising the therapeutic agent, the contrast agent, and the additive is chosen from Tyloxapol, Octoxynol, oleth, laureth, PEG-glyceryl, monolaurate, PEG-20 monolaurate, PEG 20 monooleate, PEG 20 glyceryl monooleate, Nonoxynol, Non-ylphenylpoly(glycidol), Octyl-betha-D-glycopyranoside, and deconoyl-N-methylglucamide.

In another embodiment, the additive in the layer comprising the therapeutic agent, the contrast agent, and the additive is chosen from benzalkonium chloride, benzethonium chloride, docecyl trimethyl ammonium bromide, sodium docecyl-sulfates, dialkyl methylbenzyl ammonium chloride, and dialkylesters of sodium sulfonsuccinic acid.

In one embodiment, the therapeutic agent in the layer comprising the therapeutic agent, the contrast agent, and the additive is one of paclitaxel and analogues thereof, rapamycin and analogues thereof, biological vitamin D and analogues thereof, and a mixture of these therapeutic agents. In another embodiment, the therapeutic agent is in combination with a second therapeutic agent, wherein the therapeutic agent is one of paclitaxel, rapamycin, and analogues thereof, and wherein the second therapeutic agent is one of beta-lapachone, biological active vitamin D, and their analogues. In one embodiment, the therapeutic agent is not water-soluble.

In one embodiment, the additive enhances penetration and absorption of the therapeutic agent in tissue. In one embodiment, the additive enhances release of the therapeutic agent off the medical device, and the therapeutic agent, the contrast agent, and the additive are released. In another embodiment, the additive penetrates tissue, and the therapeutic agent is not water soluble. In another embodiment, the additive has water and alcohol solubility of at least 1 mg/ml and the therapeutic agent is not water soluble.

In one embodiment, the concentration of the contrast agent and the additive in the layer is from 1 to $20\,\mu\text{g/mm}^2$. The ratio of contrast agent to additive is in the range of 0.2-5.0. In one embodiment, the concentration of the therapeutic agent in the layer is from 1 to $20\,\mu\text{g/mm}^2$. In another embodiment, the concentration of the therapeutic agent in the layer is from 2 to $6\,\mu\text{g/mm}^2$.

In one embodiment of the medical device, the device is capable of delivering the therapeutic agent to the tissue in about 0.2 to 10 minutes, or preferably from about 0.1 to 2 minutes. In another embodiment, the device is capable of delivering the therapeutic agent to the tissue in about 0.1 to 1 minute.

In one embodiment, the medical device comprising a layer overlying an exterior surface of the medical device further comprises an adherent layer between the exterior surface of the medical device and the layer. In another embodiment, the device further comprises a top layer overlying the surface of the layer to reduce loss of drug during transit through a body to the tissue. In one embodiment, the top layer comprises an additive that is less hydrophilic than the additive in the layer overlying the exterior surface of the medical device, and wherein the additive of the top layer is chosen from p-isononylphenoxypolyglycidol, PEG laurate, Tween 20, Tween 40, Tween 60, PEG oleate, PEG stearate, PEG glyceryl laurate, PEG glyceryl oleate, PEG glyceryl stearate, polyglyceryl laurate, plyglyceryl oleate, polyglyceryl myristate, polyglyceryl palmitate, polyglyceryl-6 laurate, plyglyceryl-6 oleate, polyglyceryl-6 myristate, polyglyceryl-6 palmitate,

polyglyceryl-10 laurate, plyglyceryl-10 oleate, polyglyceryl-10 myristate, polyglyceryl-10 palmitate PEG sorbitan monolaurate, PEG sorbitan monolaurate, PEG sorbitan monooleate, PEG sorbitan stearate, PEG oleyl ether, PEG laurayl ether, octoxynol, monoxynol, tyloxapol, sucrose 5 monopalmitate, sucrose monolaurate, decanoyl-N-methylglucamide, n-decyl-β-D-glucopyranoside, n-decyl-β-D-maltopyranoside, n-dodecyl-β-D-glucopyranoside, n-dodecylβ-D-maltoside, heptanoyl-N-methylglucamide, n-heptyl-β-D-glucopyranoside, n-heptyl-β-D-thioglucoside, n-hexyl-β-D-glucopyranoside, nonanoyl-N-methylglucamide, n-noylβ-D-glucopyranoside, octanoyl-N-methylglucamide, n-octyl-β-D-glucopyranoside, octyl-β-D-thioglucopyranoside; cystine, tyrosine, tryptophan, leucine, isoleucine, phenylalanine, asparagine, aspartic acid, glutamic acid, and 15 methionine; acetic anhydride, benzoic anhydride, ascorbic acid, 2-pyrrolidone-5-carboxylic acid, sodium pyrrolidone carboxylate, ethylenediaminetetraacetic dianhydride, maleic and anhydride, succinic anhydride, diglycolic anhydride, glutaric anhydride, acetiamine, benfotiamine, pantothenic acid; 20 cetotiamine; cycothiamine, dexpanthenol, niacinamide, nicotinic acid, pyridoxal 5-phosphate, nicotinamide ascorbate, riboflavin, riboflavin phosphate, thiamine, folic acid, menadiol diphosphate, menadione sodium bisulfite, menadoxime, min U; albumin, immunoglobulins, caseins, hemoglobins, lysozymes, immunoglobins, a-2-macroglobulin, fibronectins, vitronectins, firbinogens, lipases, benzalkonium chloride, benzethonium chloride, docecyl trimethyl ammonium bromide, sodium docecylsulfates, dialkyl methylbenzyl 30 ammonium chloride, and dialkylesters of sodium sulfonsuccinic acid, L-ascorbic acid and its salt, D-glucoascorbic acid and its salt, tromethamine, triethanolamine, diethanolamine, meglumine, glucamine, amine alcohols, glucoheptonic acid, glucomic acid, hydroxyl ketone, hydroxyl lactone, glucono- 35 lactone, glucoheptonolactone, glucooctanoic lactone, gulonic acid lactone, mannoic lactone, ribonic acid lactone, lactobionic acid, glucosamine, glutamic acid, benzyl alcohol, benzoic acid, hydroxybenzoic acid, propyl 4-hydroxybenzoate, lysine acetate salt, gentisic acid, lactobionic acid, lac- 40 titol, sinapic acid, vanillic acid, vanillin, methyl paraben, propyl paraben, sorbitol, xylitol, cyclodextrin, (2-hydroxypropyl)-cyclodextrin, acetaminophen, ibuprofen, retinoic acid, lysine acetate, gentisic acid, catechin, catechin gallate, tiletamine, ketamine, propofol, lactic acids, acetic acid, salts 45 of any organic acid and organic amine, polyglycidol, glycerol, multiglycerols, galactitol, di(ethylene glycol), tri(ethylene glycol), tetra(ethylene glycol), penta(ethylene glycol), poly(ethylene glycol) oligomers, di(propylene glycol), tri (propylene glycol), tetra(propylene glycol, and penta(propy- 50 lene glycol), poly(propylene glycol) oligomers, a block copolymer of polyethylene glycol and polypropylene glycol, and derivatives and combinations thereof. In another embodiment, the medical device further comprises a dimethylsulfoxide solvent layer, wherein the dimethylsulfoxide solvent layer 55 is overlying the surface of the layer.

In another embodiment of the medical device, the layer overlying the exterior surface of the medical device comprises a therapeutic agent, a contrast agent, and at least two additives, wherein each of the additives comprises a hydro- 60 philic part and a drug affinity part, wherein the drug affinity part is a hydrophobic part and/or has an affinity to the therapeutic agent by hydrogen bonding and/or van der Waals interactions.

In another embodiment of the medical device, the layer 65 overlying the exterior surface of the medical device comprises a therapeutic agent, a contrast agent, and an additive,

12

wherein the additive comprises a hydrophilic part and a drug affinity part, wherein the drug affinity part is a hydrophobic part and/or has an affinity to the therapeutic agent by hydrogen bonding and/or van der Waals interactions, wherein the additive reduces crystal size and number of particles of the therapeutic agent, and wherein the therapeutic agent is not water soluble and is not enclosed in micelles or liposomes or encapsulated in polymer particles.

In another embodiment of the medical device, the layer overlying the exterior surface of the medical device comprises a therapeutic agent, a contrast agent and an additive, wherein the additive comprises a hydrophilic part and a drug affinity part, wherein the additive has a fatty chain of an acid, ester, ether, or alcohol, wherein the fatty chain directly inserts into lipid membrane structures of tissue, wherein the additive has one or more functional groups which have affinity to the drug by hydrogen bonding and/or van der Waals interactions (the functional groups include hydroxyl, ester, amide, carboxylic acid, primary, second, and tertiary amine, carbonyl, anhydrides, oxides, and amino alcohols), wherein the therapeutic agent is not water soluble and is not encapsulated in polymer particles, and wherein the layer does not include polymer.

In another embodiment of the medical device, the layer vitamin B12, vitamin K5, vitamin K6, vitamin K6, and vita- 25 overlying the exterior surface of the medical device comprises a therapeutic agent, a contrast agent, and an additive, wherein the additive comprises a hydrophilic part and a drug affinity part, wherein the drug affinity part is a hydrophobic part and/or has an affinity to the therapeutic agent by hydrogen bonding and/or van der Waals interactions, wherein the additive is a surfactant and has a fatty chain of an acid, ester, ether, or alcohol, wherein the fatty chain directly inserts into the lipid membrane structures of the tissue, and wherein the therapeutic agent is not water soluble and is not encapsulated in polymer particles.

> In another embodiment, the present invention relates to a balloon catheter for delivering a therapeutic agent to a blood vessel for reducing stenosis and late lumen loss of body lumen, the catheter comprising a coating layer overlying an exterior surface of a balloon. In one embodiment of the balloon catheter, the coating layer comprises a therapeutic agent, a contrast agent, and an additive, wherein the additive comprises a hydrophilic part and a drug affinity part, wherein the drug affinity part is at least one of a hydrophobic part, a part that has an affinity to the therapeutic agent by hydrogen bonding, and a part that has an affinity to the therapeutic agent by van der Waals interactions, wherein the additive is watersoluble, and wherein the additive is at least one of a surfactant and a chemical compound. In one embodiment, the therapeutic agent is not encapsulated in polymer particles. In one embodiment, the coating layer overlying an exterior surface of the exterior surface of the balloon catheter consists essentially of the therapeutic agent, the contrast agent, and the additive.

> In one embodiment of the balloon catheter, the contrast agent in the coating layer overlying an exterior surface of a balloon is chosen from iobitridol, iohexol, iomeprol, iopamidol, iopentol, iopromide, ioversol, ioxilan, iotrolan, iodixanol, ioxaglate, and their derivatives. In one embodiment of the balloon catheter, the surfactant is chosen from ionic, nonionic, aliphatic, and aromatic surfactants, PEG fatty esters, PEG omega-3 fatty esters, ether, and alcohols, glycerol fatty esters, sorbitan fatty esters, PEG glyceryl fatty esters, PEG sorbitan fatty esters, sugar fatty esters, PEG sugar esters, and derivatives thereof. In one embodiment, the chemical compound has one or more hydroxyl, amino, carbonyl, carboxyl, acid, amide or ester groups. In one aspect of this embodiment,

the chemical compound having one or more hydroxyl, amino, carbonyl, carboxyl, acid, amide or ester groups is chosen from amino alcohols, hydroxyl carboxylic acid, ester, and anhydrides, hydroxyl ketone, hydroxyl lactone, hydroxyl ester, sugar phosphate, sugar sulfate, ethyl oxide, ethyl glycols, amino acids, peptides, proteins, sorbitan, glycerol, polyalcohol, phosphates, sulfates, organic acids, esters, salts, vitamins, combinations of amino alcohol and organic acid, and their substituted molecules.

In one embodiment of the balloon catheter, the additive in the coating layer is an ionic or non-ionic surfactant. In another embodiment, the additive is a vitamin or derivative thereof. In another embodiment, the additive is soluble in an aqueous solvent and is soluble in an organic solvent. In yet another embodiment, the additive is chosen from sorbitan oleate and sorbitan fatty esters.

In one embodiment, the additive in the coating layer comprising the therapeutic agent, the contrast agent, and the additive is chosen from PEG fatty esters, PEG omega-3 fatty 20 esters and alcohols, glycerol fatty esters, sorbitan fatty esters, PEG glyceryl fatty esters, PEG sorbitan fatty esters, sugar fatty esters, PEG sugar esters, vitamins and derivatives.

In another embodiment, the additive in the coating layer comprising the therapeutic agent, the contrast agent, and the 25 additive is chosen from p-isononylphenoxypolyglycidol, PEG laurate, PEG oleate, PEG stearate, PEG glyceryl laurate, PEG glyceryl oleate, PEG glyceryl stearate, polyglyceryl laurate, plyglyceryl oleate, polyglyceryl myristate, polyglyceryl palmitate, polyglyceryl-6 laurate, plyglyceryl-6 oleate, polyglyceryl-6 myristate, polyglyceryl-6 palmitate, polyglyceryl-10 laurate, plyglyceryl-10 oleate, polyglyceryl-10 myristate, polyglyceryl-10 palmitate PEG sorbitan monolaurate, PEG sorbitan monolaurate, PEG sorbitan monooleate, 35 PEG sorbitan stearate, PEG oleyl ether, PEG laurayl ether, octoxynol, monoxynol, tyloxapol, Tween 20, Tween 40, Tween 60, Tween 80, sucrose monopalmitate, sucrose monolaurate, decanoyl-N-methylglucamide, n-decyl-β-D-glucopyranoside, n-decyl-β-D-maltopyranoside, n-dodecyl-β- 40 D-glucopyranoside, n-dodecyl-β-D-maltoside, heptanoyl-Nmethylglucamide, n-heptyl-β-D-glucopyranoside, n-heptyln-hexyl-β-D-glucopyranoside, β-D-thioglucoside, nonanoyl-N-methylglucamide, n-noyl-β-D-glucopyranoside, octanoyl-N-methylglucamide, n-octyl-β-D-glucopyra- 45 noside.

In another embodiment, the additive in the coating layer comprising the therapeutic agent, the contrast agent, and the additive is chosen from Tyloxapol, Octoxynol, oleth, laureth, PEG-glyceryl, monolaurate, PEG-20 monolaurate, PEG 20 50 monooleate, PEG 20 glyceryl monooleate, Nonoxynol, Non-ylphenylpoly(glycidol), Octyl-betha-D-glycopyranoside, and deconoyl-N-methylglucamide.

In another embodiment, the additive in the coating layer comprising the therapeutic agent, the contrast agent, and the 55 additive is chosen from benzalkonium chloride, benzethonium chloride, docecyl trimethyl ammonium bromide, sodium docecylsulfates, dialkyl methylbenzyl ammonium chloride, and dialkylesters of sodium sulfonsuccinic acid.

In one embodiment, the therapeutic agent is one of paclitaxel and analogues thereof, rapamycin and analogues thereof, beta-lapachone and analogues thereof, biological vitamin D and analogues thereof, and a mixture of these therapeutic agents. In another embodiment, the therapeutic agent is in combination with a second therapeutic agent, 65 wherein the therapeutic agent is one of paclitaxel, rapamycin, and analogues thereof, and wherein the second therapeutic

14

agent is one of beta-lapachone, biological active vitamin D and their analogues. In one embodiment, the therapeutic agent is not water soluble.

In one embodiment, the additive enhances penetration and absorption of the therapeutic agent in the blood vessel. In another embodiment, the additive penetrates the blood vessel, and the therapeutic agent is not water-soluble. In another embodiment, the additive has water and ethanol solubility of at least 1 mg/ml, and the therapeutic agent is not water soluble.

In one embodiment of the balloon catheter, the catheter further comprises an adherent layer between the exterior surface of the balloon and the coating layer. In another embodiment, the catheter further comprises a top layer overlying the coating layer, wherein the top layer reduces loss of the therapeutic agent during transit through a body to the blood vessel. The top layer comprises an additive selected from those additives according to embodiments of the invention described herein. The top layer will be slowly dissolved during transit through a body to the body lumen to the target site for therapeutic intervention. This top layer will reduce drug loss during transit and increase the drug available to the tissue when the medical device of embodiments of the present invention is pressed into contact with luminal tissue. In one embodiment, the additive in the top layer is less hydrophilic than the additive in the coating layer. In another embodiment, the catheter further comprises a dimethylsulfoxide solvent layer, wherein the dimethylsulfoxide solvent layer is overlying the surface of the coating layer.

In one embodiment, the balloon catheter is capable of delivering the therapeutic agent to the blood vessel in about 0.1 to 2 minutes. In another embodiment, the balloon catheter is capable of delivering the therapeutic agent to the blood vessel in about 0.1 to 1 minute.

In one embodiment of the balloon catheter, the concentration of the therapeutic agent in the coating layer is from 1 to $20 \,\mu\text{g/mm}^2$. In another embodiment, the concentration of the therapeutic agent in the coating layer is from 2 to $6 \,\mu\text{g/mm}^2$. In one embodiment, the concentration of the additive in the coating layer is from 1 to $10 \,\mu\text{g/mm}^2$. In one embodiment, the concentration of the contrast agent in the coating layer is from 1 to $10 \,\mu\text{g/mm}^2$.

In one embodiment, the present invention relates to a balloon catheter for delivering a therapeutic agent to a blood vessel, the catheter comprising a coating layer overlying the exterior surface of a balloon, the coating layer comprising a therapeutic agent, a contrast agent, and an additive, wherein the additive comprises a hydrophilic part and a drug affinity part, wherein the drug affinity part is at least one of a hydrophobic part, a part that has an affinity to the therapeutic agent by hydrogen bonding, and a part that has an affinity to the therapeutic agent by van der Waals interactions, wherein the additive is chosen from p-isononylphenoxypolyglycidol, PEG laurate, Tween 20, Tween 40, Tween 60, PEG oleate, PEG stearate, PEG glyceryl laurate, PEG glyceryl oleate, PEG glyceryl stearate, polyglyceryl laurate, plyglyceryl oleate, polyglyceryl myristate, polyglyceryl palmitate, polyglyceryl-6 laurate, plyglyceryl-6 oleate, polyglyceryl-6 myristate, polyglyceryl-6 palmitate, polyglyceryl-10 laurate, plyglyceryl-10 oleate, polyglyceryl-10 myristate, polyglyceryl-10 palmitate PEG sorbitan monolaurate, PEG sorbitan monolaurate, PEG sorbitan monooleate, PEG sorbitan stearate, PEG oleyl ether, PEG laurayl ether, octoxynol, monoxynol, tyloxapol, sucrose monopalmitate, sucrose monolaurate. decanoyl-N-methylglucamide, n-decvl-β-Dglucopyranoside, n-decyl-β-D-maltopyranoside, n-dodecylβ-D-glucopyranoside, n-dodecyl-β-D-maltoside, heptanoyl-

n-heptyl- β -D-glucopyranoside, N-methylglucamide, n-heptyl-β-D-thioglucoside, n-hexyl-β-D-glucopyranoside, nonanoyl-N-methylglucamide, n-noyl-β-D-glucopyranoside, octanoyl-N-methylglucamide, n-octyl-β-D-glucopyranoside, octyl-β-D-thioglucopyranoside; cystine, tyrosine, 5 tryptophan, leucine, isoleucine, phenylalanine, asparagine, aspartic acid, glutamic acid, and methionine; acetic anhydride, benzoic anhydride, ascorbic acid, 2-pyrrolidone-5-carboxylic acid, sodium pyrrolidone carboxylate, ethylenediaminetetraacetic dianhydride, maleic and anhydride, succinic 10 anhydride, diglycolic anhydride, glutaric anhydride, acetiamine, benfotiamine, pantothenic acid; cetotiamine; cycothiamine, dexpanthenol, niacinamide, nicotinic acid, pyridoxal 5-phosphate, nicotinamide ascorbate, riboflavin, riboflavin phosphate, thiamine, folic acid, menadiol diphos- 15 phate, menadione sodium bisulfite, menadoxime, vitamin B12, vitamin K5, vitamin K6, vitamin K6, and vitamin U; albumin. immunoglobulins, caseins, hemoglobins, lysozymes, immunoglobins, a-2-macroglobulin, fibronectins, vitronectins, firbinogens, lipases, benzalkonium chlo- 20 ride, benzethonium chloride, docecyl trimethyl ammonium bromide, sodium docecylsulfates, dialkyl methylbenzyl ammonium chloride, and dialkylesters of sodium sulfonsuccinic acid, L-ascorbic acid and its salt, D-glucoascorbic acid and its salt, tromethamine, triethanolamine, diethanolamine, 25 meglumine, glucamine, amine alcohols, glucoheptonic acid, glucomic acid, hydroxyl ketone, hydroxyl lactone, gluconolactone, glucoheptonolactone, glucooctanoic gulonic acid lactone, mannoic lactone, ribonic acid lactone, lactobionic acid, glucosamine, glutamic acid, benzyl alcohol, 30 benzoic acid, hydroxybenzoic acid, propyl 4-hydroxybenzoate, lysine acetate salt, gentisic acid, lactobionic acid, lactitol, sinapic acid, vanillic acid, vanillin, methyl paraben, propyl paraben, sorbitol, xylitol, cyclodextrin, (2-hydroxypropyl)-cyclodextrin, acetaminophen, ibuprofen, retinoic 35 acid, lysine acetate, gentisic acid, catechin, catechin gallate, tiletamine, ketamine, propofol, lactic acids, acetic acid, salts of any organic acid and organic amine, polyglycidol, glycerol, multiglycerols, galactitol, di(ethylene glycol), tri(ethylene glycol), tetra(ethylene glycol), penta(ethylene glycol), 40 poly(ethylene glycol) oligomers, di(propylene glycol), tri (propylene glycol), tetra(propylene glycol, and penta(propylene glycol), poly(propylene glycol) oligomers, a block copolymer of polyethylene glycol and polypropylene glycol, and derivatives and combinations thereof.

In yet a further embodiment, the present invention relates to a balloon catheter for delivering a therapeutic agent to a blood vessel. In one aspect of this embodiment, the catheter comprises an elongate member having a lumen and a distal end, an expandable balloon attached to the distal end of the 50 elongate member and in fluid communication with the lumen, and a coating layer overlying an exterior surface of the balloon. In one aspect of this embodiment, the coating layer overlying the surface of the balloon comprises a lipophilic or water-insoluble therapeutic agent, a contrast agent, and an 55 additive, wherein the additive comprises a hydrophilic part and a drug affinity part, wherein the drug affinity part comprises a hydrophobic part and/or has an affinity to the therapeutic agent by hydrogen bonding and/or van der Waals interactions, wherein the additive is water-soluble, and wherein 60 the catheter is capable of delivering the therapeutic agent to the blood vessel in less than about 2 minutes. In one aspect of this embodiment, the layer does not include a purely hydrophobic additive.

In one embodiment, the coating layer overlying the surface 65 of the balloon consists essentially of the therapeutic agent, the contrast agent, and the additive. In one embodiment, the

16

therapeutic agent in the coating layer overlying the surface of the balloon is paclitaxel and analogues thereof. In another embodiment, the therapeutic agent in the coating layer overlying the surface of the balloon is rapamycin and analogues thereof. In one embodiment, the coating layer overlying the suface of the contains two therapeutic agents, one of which is paclitaxel or analogues thereof or rapamycin or analogues thereof, and the second of which is selected from agents that inhibit vasospasm.

In one embodiment, the concentration of the therapeutic agent in the coating layer is from 2.5 to $6 \mu g/mm^2$.

In one embodiment, the additive in the coating layer overlying the surface of the balloon is an ionic or non-ionic surfactant. In another embodiment, the additive in the coating layer overlying the surface of the balloon is a vitamin or derivative thereof.

In one embodiment, the additive in the coating layer overlying the surface of the balloon is chosen from Tyloxapol, Octoxynol, oleth, laureth, PEG-glyceryl, monolaurate, PEG-20 monolaurate, PEG 20 monolaurate, PEG 20 monolaurate, PEG 20 glyceryl monoleate, Nonoxynol, Nonylphenylpoly(glycidol), Octylbetha-D-glycopyranoside, and deconoyl-N-methylglucamide. In another embodiment, the additive in the coating layer overlying the surface of the balloon is chosen from PEG fatty esters, PEG omega-3 fatty esters and alcohols, glycerol fatty esters, sorbitan fatty esters, PEG glyceryl fatty esters, PEG sorbitan fatty esters, sugar fatty esters, PEG sugar esters, vitamins and derivatives.

In another embodiment, the additive in the coating layer overlying the surface of the balloon is chosen from p-isononylphenoxypolyglycidol, PEG laurate, PEG oleate, PEG stearate, PEG glyceryl laurate, PEG glyceryl oleate, PEG glyceryl stearate, polyglyceryl laurate, plyglyceryl oleate, polyglyceryl myristate, polyglyceryl palmitate, polyglyceryl-6 laurate, plyglyceryl-6 oleate, polyglyceryl-6 myristate, polyglyceryl-6 palmitate, polyglyceryl-10 laurate, plyglyceryl-10 oleate, polyglyceryl-10 myristate, polyglyceryl-10 palmitate PEG sorbitan monolaurate, PEG sorbitan monolaurate, PEG sorbitan monooleate, PEG sorbitan stearate, PEG oleyl ether, PEG laurayl ether, octoxynol, monoxynol, tyloxapol, sucrose monopalmitate, sucrose monolaurate, Tween 20, Tween 40, Tween 60, Tween 80, decanoyl-Nmethylglucamide, n-decyl-β-D-glucopyranoside, n-decyl-β-D-maltopyranoside, n-dodecyl-β-D-glucopyranoside, n-dodecyl-β-D-maltoside, heptanoyl-N-methylglucamide, n-heptyl-β-D-glucopyranoside, n-heptyl-β-D-thioglucoside, n-hexvl-β-D-glucopyranoside, nonanovl-N-methylglucamide, n-noyl-β-D-glucopyranoside, octanoyl-N-methylglucamide, n-octyl-β-D-glucopyranoside, and octyl-β-D-thioglucopyranoside. In yet another embodiment, the additive in the coating layer overlying the surface of the balloon is chosen from benzalkonium chloride, benzethonium chloride, docecyl trimethyl ammonium bromide, sodium docecylsulfates, dialkyl methylbenzyl ammonium chloride, and dialkylesters of sodium sulfonsuccinic acid.

In one embodiment, the balloon catheter further comprises a dimethylsulfoxide solvent layer overlying the coating layer, wherein the dimethylsulfoxide layer enhances the ability of the therapeutic agent to penetrate into the blood vessel. In another embodiment, the balloon catheter further comprises an adherent layer between the exterior surface of the balloon and the coating layer. In yet another embodiment, the balloon catheter further comprises a top layer overlying the coating layer, wherein the top layer reduces loss of the therapeutic agent and/or contrast agent, and/or additive in the coating layer during transit through a body or blood vessel to the target site for intervention.

In yet a further embodiment, the present invention relates to a pharmaceutical composition comprising a therapeutic agent, a contrast agent, and an additive, wherein the additive comprises a hydrophilic part and a drug affinity part, wherein the drug affinity part is at least one of a hydrophobic part, a 5 part that has an affinity to the therapeutic agent by hydrogen bonding, and a part that has an affinity to the therapeutic agent by van der Waals interactions, wherein the additive is watersoluble, wherein the additive is at least one of a surfactant and a chemical compound.

In one embodiment, the contrast agent is chosen from iobitridol, iohexol, iomeprol, iopamidol, iopentol, iopromide, ioversol, ioxilan, iotrolan, iodixanol, ioxaglate, and their derivatives. In one embodiment, the surfactant is chosen from ionic, nonionic, aliphatic, and aromatic surfactants, 15 PEG fatty esters, PEG omega-3 fatty esters, ether, and alcohols, glycerol fatty esters, sorbitan fatty esters, PEG glyceryl fatty esters, PEG sorbitan fatty esters, sugar fatty esters, PEG sugar esters and derivatives thereof. In one embodiment, the chemical compound has one or more hydroxyl, amino, car- 20 bonyl, carboxyl, acid, amide or ester groups. In one aspect of this embodiment, the chemical compound having one or more hydroxyl, amino, carbonyl, carboxyl, acid, amide or ester groups is chosen from amino alcohols, hydroxyl carboxylic acid, ester, and anhydrides, hydroxyl ketone, hydroxyl lac- 25 tone, hydroxyl ester, sugar phosphate, sugar sulfate, ethyl oxide, ethyl glycols, amino acids, peptides, proteins, sorbitan, glycerol, polyalcohol, phosphates, sulfates, organic acids, esters, salts, vitamins, combinations of amino alcohol and organic acid, and their substituted molecules.

In one embodiment of the pharmaceutical composition, the additive is chosen from p-isononylphenoxypolyglycidol, PEG laurate, Tween 20, Tween 40, Tween 60, PEG oleate, PEG stearate, PEG glyceryl laurate, PEG glyceryl oleate, ate, polyglyceryl myristate, polyglyceryl palmitate, polyglyceryl-6 laurate, plyglyceryl-6 oleate, polyglyceryl-6 myristate, polyglyceryl-6 palmitate, polyglyceryl-10 laurate, plyglyceryl-10 oleate, polyglyceryl-10 myristate, polyglyceryl-10 palmitate PEG sorbitan monolaurate, PEG sorbitan 40 monolaurate, PEG sorbitan monooleate, PEG sorbitan stearate, PEG oleyl ether, PEG laurayl ether, octoxynol, monoxynol, tyloxapol, sucrose monopalmitate, sucrose monolaudecanoyl-N-methylglucamide, n-decyl-β-Dglucopyranoside, n-decyl-β-D-maltopyranoside, n-dodecyl- 45 β-D-glucopyranoside, n-dodecyl-β-D-maltoside, heptanoyl-N-methylglucamide. n-heptyl-β-D-glucopyranoside, n-heptyl-β-D-thioglucoside, n-hexyl-β-D-glucopyranoside, nonanoyl-N-methylglucamide, n-noyl-β-D-glucopyranoside, octanoyl-N-methylglucamide, n-octyl-β-D-glucopyra- 50 noside, octyl-β-D-thioglucopyranoside; cystine, tyrosine, tryptophan, leucine, isoleucine, phenylalanine, asparagine, aspartic acid, glutamic acid, and methionine; acetic anhydride, benzoic anhydride, ascorbic acid, 2-pyrrolidone-5-carboxylic acid, sodium pyrrolidone carboxylate, ethylenedi- 55 aminetetraacetic dianhydride, maleic and anhydride, succinic anhydride, diglycolic anhydride, glutaric anhydride, acetiamine, benfotiamine, pantothenic acid; cetotiamine; cycothiamine, dexpanthenol, niacinamide, nicotinic acid, pyridoxal 5-phosphate, nicotinamide ascorbate, riboflavin, 60 riboflavin phosphate, thiamine, folic acid, menadiol diphosphate, menadione sodium bisulfite, menadoxime, vitamin B12, vitamin K5, vitamin K6, vitamin K6, and vitamin U; immunoglobulins, caseins, hemoglobins, albumin. lysozymes, immunoglobins, a-2-macroglobulin, fibronec- 65 tins, vitronectins, firbinogens, lipases, benzalkonium chloride, benzethonium chloride, docecyl trimethyl ammonium

bromide, sodium docecylsulfates, dialkyl methylbenzyl ammonium chloride, and dialkylesters of sodium sulfonsuccinic acid, L-ascorbic acid and its salt, D-glucoascorbic acid and its salt, tromethamine, triethanolamine, diethanolamine, meglumine, glucamine, amine alcohols, glucoheptonic acid, glucomic acid, hydroxyl ketone, hydroxyl lactone, gluconolactone, glucoheptonolactone, glucooctanoic lactone, gulonic acid lactone, mannoic lactone, ribonic acid lactone, lactobionic acid, glucosamine, glutamic acid, benzyl alcohol, benzoic acid, hydroxybenzoic acid, propyl 4-hydroxybenzoate, lysine acetate salt, gentisic acid, lactobionic acid, lactitol, sinapic acid, vanillic acid, vanillin, methyl paraben, propyl paraben, sorbitol, xylitol, cyclodextrin, (2-hydroxypropyl)-cyclodextrin, acetaminophen, ibuprofen, retinoic acid, lysine acetate, gentisic acid, catechin, catechin gallate, tiletamine, ketamine, propofol, lactic acids, acetic acid, salts of any organic acid and organic amine, polyglycidol, glycerol, multiglycerols, galactitol, di(ethylene glycol), tri(ethylene glycol), tetra(ethylene glycol), penta(ethylene glycol), poly(ethylene glycol) oligomers, di(propylene glycol), tri (propylene glycol), tetra(propylene glycol, and penta(propylene glycol), poly(propylene glycol) oligomers, a block copolymer of polyethylene glycol and polypropylene glycol, and derivatives and combinations thereof.

In yet a further embodiment, the present invention relates to a pharmaceutical composition for treating a diseased body lumen or cavity after a surgical or interventional procedure, wherein the composition comprises a therapeutic agent, a contrast agent, and an additive, wherein the additive comprises a hydrophilic part and a drug affinity part, wherein the therapeutic agent is not enclosed in micelles or liposomes or encapsulated in polymer particles.

In yet a further embodiment, the present invention relates PEG glyceryl stearate, polyglyceryl laurate, plyglyceryl ole- 35 to a method for treating a diseased body lumen or cavity after a surgical or interventional procedure comprising delivering a pharmaceutical composition at a surgical site by injection or spraying with a catheter, wherein the composition comprises a therapeutic agent, a contrast agent, and an additive, wherein the additive comprises a hydrophilic part and a drug affinity part, wherein the therapeutic agent is not enclosed in micelles or liposomes or encapsulated in polymer particles.

> In yet a further embodiment, the present invention relates to a pharmaceutical composition for treating a cancer including cancers of the ovary, breast, lung, esophagus, head and neck region, bladder, brain, liver, colon and lymphomas, wherein the composition comprises a therapeutic agent, a contrast agent, and an additive, wherein the additive comprises a hydrophilic part and a drug affinity part, wherein the drug affinity part is a hydrophobic part and/or has an affinity to the therapeutic agent by hydrogen bonding and/or van der Waals interactions, and wherein the therapeutic agent is not enclosed in micelles or liposomes or encapsulated in polymer particles. In one aspect of this embodiment, the therapeutic agent is chosen from paclitaxel and analogues thereof and rapamycin and analogues thereof.

> In yet a further embodiment, the present invention relates to a solution for coating a medical device. In one aspect of this embodiment, the solution comprises an organic solvent, a therapeutic agent, a contrast agent, and an additive, wherein the additive comprises a hydrophilic part and a drug affinity part, wherein the drug affinity part is a hydrophobic part and/or has an affinity to the therapeutic agent by hydrogen bonding and/or van der Waals interactions, and wherein the therapeutic agent is not enclosed in micelles liposomes or encapsulated in polymer particles. In one aspect of this embodiment, the solution does not include a purely hydro-

phobic additive. In another embodiment, the solution for coating a medical device does not include oil, a lipid, or a polymer.

In one embodiment, the additive in the coating solution is an ionic or non-ionic surfactant. In another embodiment, the 5 additive is a vitamin or derivative thereof.

In one embodiment, the additive in the coating solution is chosen from Tyloxapol, Octoxynol, oleth, laureth, PEG-glyceryl, monolaurate, PEG-20 monolaurate, PEG 20 monooleate, PEG 20 glyceryl monooleate, Nonoxynol, Non-10 ylphenylpoly(glycidol), Octyl-betha-D-glycopyranoside, and deconoyl-N-methylglucamide.

In another embodiment, the additive in the coating solution is chosen from PEG fatty esters, PEG omega-3 fatty esters and alcohols, glycerol fatty esters, sorbitan fatty esters, PEG glyceryl fatty esters, PEG sorbitan fatty esters, sugar fatty esters, PEG sugar esters, vitamins and derivatives, amino acids, multi amino acids and derivatives, peptides, polypeptides, proteins, quaternary ammonium salts, organic acids, salts and anhydrides.

In another embodiment, the additive in the coating solution is chosen from p-isononylphenoxypolyglycidol, PEG laurate, PEG oleate, PEG stearate, PEG glyceryl laurate, PEG glyceryl oleate, PEG glyceryl stearate, polyglyceryl laurate, plyglyceryl oleate, polyglyceryl myristate, polyglyceryl 25 palmitate, polyglyceryl-6 laurate, plyglyceryl-6 oleate, polyglyceryl-6 myristate, polyglyceryl-6 palmitate, polyglyceryl-10 laurate, plyglyceryl-10 oleate, polyglyceryl-10 myristate, polyglyceryl-10 palmitate PEG sorbitan monolaurate, PEG sorbitan monolaurate, PEG sorbitan monooleate, 30 PEG sorbitan stearate, PEG oleyl ether, PEG laurayl ether, octoxynol, monoxynol, tyloxapol, Tween 20, Tween 40, Tween 60, Tween 80, sucrose monopalmitate, sucrose monolaurate, decanoyl-N-methylglucamide, n-decyl-β-D-glucopyranoside, n-decyl-β-D-maltopyranoside, n-dodecyl-β- 35 D-glucopyranoside, n-dodecyl-β-D-maltoside, heptanoyl-Nmethylglucamide, n-heptyl-β-D-glucopyranoside, n-heptylβ-D-thioglucoside, n-hexyl-β-D-glucopyranoside, nonanoyl-N-methylglucamide, n-noyl-β-D-glucopyranoside, octanoyl-N-methylglucamide, n-octyl-β-D-glucopyra- 40 noside, octyl-β-D-thioglucopyranoside, benzalkonium chloride, benzethonium chloride, docecyl trimethyl ammonium bromide, sodium docecylsulfates, dialkyl methylbenzyl ammonium chloride, and dialkylesters of sodium sulfonsuccinic acid (ionic surfactants).

In another embodiment, the additive in the solution is chosen from sorbitan fatty esters. In yet another embodiment, the additive in the coating solution is chosen from benzalkonium chloride, benzethonium chloride, docecyl trimethyl ammonium bromide, sodium docecylsulfates, dialkyl methylbenzyl 50 ammonium chloride, and dialkylesters of sodium sulfonsuccinic acid.

In one embodiment, the therapeutic agent in the coating solution is paclitaxel or analogues thereof or rapamycin or analogues thereof.

In one embodiment, the content of the therapeutic agent in the solution is from 0.5-50% by weight. In one embodiment, the content of the additive in the coating solution is from 1-45% by weight. In one embodiment, the content of the contrast agent in the coating solution is from 1-45% by 60 weight.

In one embodiment, the additive in the solution is soluble in aqueous solvent and is soluble in organic solvent.

In yet a further embodiment, the present invention relates to a medical device for delivering a therapeutic agent to a 65 tissue, the device comprising a first layer applied to an exterior surface of the medical device, and a second layer overly20

ing the first layer. In one aspect of this embodiment, the first layer comprises a therapeutic agent, and the second layer comprises a contrast agent and an additive, wherein the additive comprises a hydrophilic part and a drug affinity part, and wherein the therapeutic agent in the first layer is not enclosed in micelles or liposomes or encapsulated in polymer particles. In one aspect of this embodiment, the first layer further comprises a contrast agent and an additive. In another aspect of this embodiment, the second layer further comprises a therapeutic agent. In yet a further aspect of this embodiment, the first layer further comprises an additive and the second layer further comprises a therapeutic agent.

In a further embodiment, the present invention relates to a two layer coating comprising a first layer comprising a therapeutic agent, and a second layer comprising a contrast agent and an additive. In one aspect of this embodiment, the second layer may be overlying the first layer. In one aspect of this embodiment, the additive in the second layer comprises a hydrophilic part and a drug affinity part, and the therapeutic agent in the first layer is not enclosed in micelles or liposomes or encapsulated in polymer particles. In one aspect of this embodiment, the first layer further comprises an additive. In another aspect of this embodiment, the second layer further comprises a therapeutic agent. In yet another aspect of this embodiment, the first layer further comprises an additive or a contrast agent and the second layer further comprises a therapeutic agent.

In a further embodiment, the present invention relates to a method for preparing a medical device. In one aspect of this embodiment, the method comprises (a) preparing a coating solution comprising an organic solvent, a therapeutic agent, a contrast agent, and an additive, wherein the additive comprises a hydrophilic part and a drug affinity part, wherein the drug affinity part is a hydrophobic part and/or has an affinity to the therapeutic agent by hydrogen bonding and/or van der Waals interactions, and wherein the therapeutic agent is not enclosed in micelles or encapsulated in polymer particles, (b) applying the coating solution to a medical device, and (c) drying the coating solution, forming a coating layer. In one aspect of this embodiment, the coating is applied by dipping a portion of the exterior surface of the medical device in the coating solution. In another aspect of this embodiment, the coating is applied by spraying a portion of the exterior surface of the medical device with a coating solution. In another aspect of this embodiment, steps (b) and (c) are repeated until a therapeutically effective amount of the therapeutic agent in the coating layer is deposited on the surface of the medical device. In another aspect of this embodiment, the total thickness of the coating layer is from about 0.1 to 200 microns. In another aspect of this embodiment, the concentration density of the at least one therapeutic agent applied to the surface of the medical device is from about 1 to 20 µg/mm², or in another aspect from about 2 to 6 µg/mm². In yet another aspect of this embodiment, the method further comprises applying a dim-55 ethylsulfoxide solvent to the dried coating layer obtained in step (c).

In another embodiment, the method for preparing the medical device comprises, (a) preparing a coating solution comprising an organic solvent, a therapeutic agent, a contrast agent, and an additive, wherein the additive is an anhydride, (b) applying the coating solution to a medical device, (c) drying the coating solution, forming a coating layer, and (d) hydrolyzing the anhydride to an acid group.

In a further embodiment, the present invention relates to a method for preparing a drug coated balloon catheter. In one aspect of this embodiment, the method comprises, (a) preparing a coating solution comprising an organic solvent, a thera-

peutic agent, a contrast agent, and an additive, (b) applying the coating solution to an inflated balloon catheter, and (c) deflating and folding the balloon catheter and drying the coating solution to increase uniformity of drug coating.

In a further embodiment, the present invention relates to a method for treating a blood vessel. In one aspect of this embodiment, the method comprises inserting a medical device comprising a coating layer into the blood vessel, wherein the coating layer comprises a therapeutic agent, a contrast agent, and an additive, wherein the additive comprises a hydrophilic part and a drug affinity part, and wherein the therapeutic agent is not enclosed in micelles or liposomes or encapsulated in polymer particles, and releasing the therapeutic agent into the tissue of the blood vessel in 2 minutes or

In a further embodiment, the present invention relates to a method for treating a total occlusion or narrowing of body passages. In one aspect of this embodiment, the method comprises removing plaques in the body passages by one of a debulking catheter, a laser atherectomy, a directing atherectomy, or a rotational atherectomy, inserting a medical device comprising a coating layer into the body passages, wherein the coating layer comprises a therapeutic agent, a contrast agent, and an additive, wherein the additive comprises a hydrophilic part and a drug affinity part, and releasing the 25 therapeutic agent, the contrast agent, and the additive, and delivering the therapeutic agent into the tissue of the body passage or lumen, such as a blood vessel, in 2 minutes or less.

In a further embodiment, the present invention relates to a method for treating tissue of a body comprising bringing a 30 medical device comprising a coating layer into contact with tissue of the body, wherein the coating layer comprises a therapeutic agent, a contrast agent, and an additive, wherein the additive comprises a hydrophilic part and a drug affinity part, and releasing the therapeutic agent, the contrast agent, 35 and the additive, and delivering the therapeutic agent into the tissue in 2 minutes or less. In one aspect of this embodiment, the tissue includes tissue of one of coronary vasculature, peripheral vasculature, cerebral vasculature, esophagus, airways, sinus, trachea, colon, biliary tract, urinary tract, prostate, and brain passages.

In yet a further embodiment, the present invention relates to a process of producing a balloon catheter. In one aspect of this embodiment, the process comprises preparing a solution comprising an organic solvent, a therapeutic agent, a contrast 45 agent, and an additive, wherein the additive comprises a hydrophilic part and a drug affinity part, and wherein the therapeutic agent is not enclosed in micelles or liposomes or encapsulated in polymer particles, applying the solution to the balloon catheter, and evaporating the solvent.

In yet a further embodiment, the present invention relates to a medical device comprising a layer overlying an exterior surface of the medical device, the layer comprising a therapeutic agent, a contrast agent, and an additive, wherein the additive is one of PEG fatty ester, PEG fatty ether, and PEG 55 fatty alcohols. In one aspect of this embodiment, the additive is chosen from PEG-8 laurate, PEG-8 oleate, PEG-8 stearate, PEG-9 oleate, PEG-10 laurate, PEG-10 oleate, PEG-12 laurate, PEG-12 oleate, PEG-15 oleate, PEG-20 laurate, PEG-20 oleate, PEG-20 dilaurate, PEG-20 dioleate, PEG-20 distear- 60 ate, PEG-32 dilaurate and PEG-32 dioleate. In another aspect of this embodiment, the tissue includes tissue of one of coronary vasculature, peripheral vasculature, cerebral vasculature, esophagus, airways, sinus, trachea, colon, biliary tract, urinary tract, prostate, and brain passages. In yet another 65 aspect of this embodiment, the device includes one of a balloon catheter, a perfusion balloon catheter, an infusion cath22

eter, a cutting balloon catheter, a scoring balloon catheter, a laser catheter, an atherectomy device, a debulking catheter, a stent, a filter, a stent graft, a covered stent, a patch, a wire, and a valve.

In yet a further embodiment, the present invention relates to a medical device comprising a layer overlying an exterior surface of the medical device, the layer comprising a therapeutic agent, a contrast agent, and an additive, wherein the additive is one of glycerol and polyglycerol fatty esters and PEG glycerol fatty esters. In one aspect of this embodiment, the additive is chosen from polyglyceryl oleate, polyglyceryl-2 dioleate, polyglyceryl-10 trioleate, polyglyceryl stearate, polyglyceryl laurate, polyglyceryl myristate, polyglyceryl palmitate, polyglyceryl linoleate, polyglyceryl-10 laurate, polyglyceryl-10 oleate, polyglyceryl-10 mono, dioleate, polyglyceryl-10 stearate, polyglyceryl-10 laurate, polyglyceryl-10 myristate, polyglyceryl-10 palmitate, polyglyceryl-10 linoleate, polyglyceryl-6 stearate, polyglyceryl-6 laurate, polyglyceryl-6 myristate, polyglyceryl-6 palmitate, and polyglyceryl-6 linoleate, polyglyceryl polyricinoleates, PEG-20 glyceryl laurate, PEG-30 glyceryl laurate, PEG-40 glyceryl laurate, PEG-20 glyceryl oleate, and PEG-30 glyceryl oleate. In another aspect of this embodiment, the tissue includes tissue of one of coronary vasculature, peripheral vasculature, cerebral vasculature, esophagus, airways, sinus, trachea, colon, biliary tract, urinary tract, prostate, and brain passages. In yet another aspect of this embodiment, the device includes one of a balloon catheter, a perfusion balloon catheter, an infusion catheter, a cutting balloon catheter, a scoring balloon catheter, a laser catheter, an atherectomy device, a debulking catheter, a stent, a filter, a stent graft, a covered stent, a patch, a wire, and a valve.

In yet a further embodiment, the present invention relates to a medical device comprising a layer overlying an exterior surface of the medical device, the layer comprising a therapeutic agent, a contrast agent, and an additive, wherein the additive is one of sorbitan fatty esters, and PEG sorbitan esters. In one aspect of this embodiment, the additive is chosen from sorbitan monolaurate, sorbitan monopalmitate, sorbitan monooleate, sorbitan monostearate, Tween 20, Tween 40, Tween 60, Tween 80, PEG-20 sorbitan monolaurate, PEG-20 sorbitan monopalmitate, PEG-20 sorbitan monooleate, and PEG-20 sorbitan monostearate. In another aspect of this embodiment, the tissue includes tissue of one of coronary vasculature, peripheral vasculature, cerebral vasculature, esophagus, airways, sinus, trachea, colon, biliary tract, urinary tract, prostate, and brain passages. In yet another aspect of this embodiment, the device includes one of a balloon catheter, a perfusion balloon catheter, an infusion catheter, perforated balloon, porous balloon, weeping balloon, a cutting balloon catheter, a scoring balloon catheter, a laser catheter, an atherectomy device, a debulking catheter, a stent, a filter, a stent graft, a covered stent, a patch, a wire, and a valve.

In yet a further embodiment, the present invention relates to a medical device comprising a layer overlying an exterior surface of the medical device, the layer comprising a therapeutic agent, a contrast agent, and an additive, wherein the additive is a chemical compound containing a phenol moiety. In one aspect of this embodiment, the additive is chosen from p-isononylphenoxypolyglycidol, octoxynol, monoxynol, tyloxapol, octoxynol-9, and monoxynol-9. In another aspect of this embodiment, the tissue includes tissue of one of coronary vasculature, peripheral vasculature, cerebral vasculature, esophagus, airways, sinus, trachea, colon, biliary tract, urinary tract, prostate, and brain passages. In yet another aspect of this embodiment, the device includes one of a bal-

loon catheter, a perfusion balloon catheter, an infusion catheter, perforated balloon, porous balloon, weeping balloon, a cutting balloon catheter, a scoring balloon catheter, a laser catheter, an atherectomy device, a debulking catheter, a stent, a filter, a stent graft, a covered stent, a patch, a wire, and a 5 valve

In vet a further embodiment, the present invention relates to a medical device comprising a layer overlying an exterior surface of the medical device, the layer comprising a therapeutic agent, a contrast agent, and an additive, wherein the additive is a sugar or sugar derivative. In one aspect of this embodiment, the additive is chosen from sucrose monolaurate, decanoyl-N-methylglucamide, n-decyl-β-D-glucopyranoside, n-decyl-β-D-maltopyranoside, n-dodecyl-β-D-glucopyranoside, n-dodecyl-β-D-maltoside, heptanoyl-Nmethylglucamide, n-heptyl-β-D-glucopyranoside, n-heptylβ-D-thioglucoside, n-hexyl-β-D-glucopyranoside, nonanoyl-N-methylglucamide, n-noyl-β-D-glucopyranoside, octanoyl-N-methylglucamide, n-octyl-β-D-glucopyra- 20 noside, octyl-β-D-thioglucopyranoside, D-glucoascorbic acid and its salt, triethanolamine, diethanolamine, meglumine, tromethamine, glucamine, glucosamine, glucoheptonic acid, glucomic acid, hydroxyl ketone, hydroxyl lactone, gluconolactone, glucoheptonolactone, glucooctanoic lac- 25 tone, gulonic acid lactone, mannoic lactone, ribonic acid lactone, lactobionic acid, glutamic acid, benzyl alcohol, benzoic acid, hydroxybenzoic acid, vanillin, vanillic acid, vanillic acid diethylamide, lysine acetate salt, gentisic acid, lactobionic acid, lactitol, diethylene glycol, triethylene glycol, 30 tetraethylene glycol, xylitol, 2-ethoxyethanol, sugars, galactose, glucose, mannose, xylose, sucrose, lactose, maltose, sorbitol, cyclodextrin, (2-hydroxypropyl)-cyclodextrin, acetaminophen, ibuprofen, catechin, catechin gallate, methyl paraben, ethyl paraben, propyl paraben, butyl paraben, tile- 35 tamine, ketamine, propofol, lactic acids, acetic acid, salts of any organic acid and amine described above. In another aspect of this embodiment, the tissue includes tissue of one of coronary vasculature, peripheral vasculature, cerebral vasculature, esophagus, airways, sinus, trachea, colon, biliary tract, 40 urinary tract, prostate, and brain passages. In yet another aspect of this embodiment, the device includes one of a balloon catheter, a perfusion balloon catheter, an infusion catheter, a cutting balloon catheter, a scoring balloon catheter, a laser catheter, an atherectomy device, a debulking catheter, a 45 stent, a filter, a stent graft, a covered stent, a patch, a wire, and a valve.

In yet a further embodiment, the present invention relates to a medical device comprising a layer overlying an exterior surface of the medical device, the layer comprising a thera- 50 peutic agent, a contrast agent, and an additive, wherein the additive is an ionic surfactant. In one aspect of this embodiment, the additive is chosen from benzalkonium chloride, benzethonium chloride, cetylpyridinium chloride, docecyl trimethyl ammonium bromide, sodium docecylsulfates, 55 dialkyl methylbenzyl ammonium chloride, edrophonium chloride, domiphen bromide, and dialkylesters of sodium sulfonsuccinic acid, sodium dioctyl sulfosuccinate, sodium cholate, and sodium taurocholate. In another aspect of this embodiment, the tissue includes tissue of one of coronary 60 vasculature, peripheral vasculature, cerebral vasculature, esophagus, airways, sinus, trachea, colon, biliary tract, urinary tract, prostate, and brain passages. In yet another aspect of this embodiment, the device includes one of a balloon catheter, a perfusion balloon catheter, an infusion catheter, 65 perforated balloon, porous balloon, weeping balloon, a cutting balloon catheter, a scoring balloon catheter, a laser cath24

eter, an atherectomy device, a debulking catheter, a stent, a filter, a stent graft, a covered stent, a patch, a wire, and a valve.

Many embodiments of the present invention are particularly useful for treating vascular disease and for reducing stenosis and late luminal loss, or are useful in the manufacture of devices for that purpose.

It is understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the present invention as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective view of an exemplary embodiment of a balloon catheter according to the present invention.

FIGS. 2A-2C are cross-sectional views of different embodiments of the distal portion of the balloon catheter of FIG. 1, taken along line A-A, showing exemplary coating layers.

DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

Embodiments of the present invention relate to medical devices, including particularly balloon catheters and stents, having a rapid drug-releasing coating and methods for preparing such coated devices. The therapeutic agent according to embodiments of the present invention does not require a delayed or long term release and instead preferably is released in a very short time period, from seconds to minutes, to provide a therapeutic effect upon contact with tissue. An object of embodiments of the present invention is to facilitate rapid and efficient uptake of drug by target tissue during transitory device deployment at a target site.

As shown in FIG. 1, in one embodiment, the medical device is a balloon catheter. The balloon catheter may be any suitable catheter for the desired use, including conventional balloon catheters known to one of ordinary skill in the art. For example, balloon catheter 10 may include an expandable, inflatable balloon 12 at a distal end of the catheter 10, a handle assembly 16 at a proximal end of the catheter 10, and an elongate flexible member 14 extending between the proximal and distal ends. Handle assembly 16 may connect to and/or receive one or more suitable medical devices, such as a source of inflation media (e.g., air, saline, or contrast media). Flexible member 14 may be a tube made of suitable biocompatible material and having one or more lumens therein. At least one of the lumens is configured to receive inflation media and pass such media to balloon 12 for its expansion. The balloon catheter may be a rapid exchange or over-the-wire catheter and made of any suitable biocompatible material.

In one embodiment, the present invention provides a medical device for delivering a therapeutic agent to a tissue. The device includes a layer applied to an exterior surface of the medical device, such as a balloon catheter or stent, for example. The layer includes a therapeutic agent, a contrast agent, and an additive. For example, as shown in the embodiment depicted in FIG. 2A, the balloon 12 is coated with a layer 20 that includes a therapeutic agent, a contrast agent, and an additive. In some embodiments, the layer consists essentially of a therapeutic agent, a contrast agent, and an additive, i.e., the layer includes only the therapeutic agent, the contrast agent, and the additive, without any other materially significant components. In some embodiments, the device may optionally include an adherent layer. For example, as shown in the embodiment depicted in FIG. 2B, the balloon 12 is coated with an adherent layer 22. A layer 24 that includes a

therapeutic agent, a contrast agent, and an additive is overlying the adherent layer. The adherent layer, which is a separate layer underlying the drug coating layer, improves the adherence of the drug coating layer to the exterior surface of the medical device and protects coating integrity. For example, if 5 the therapeutic agent, contrast agent, and additive differ in their adherence to the medical device, the adherent layer may prevent differential loss of components and maintain drugto-additive ratio and drug-to-contrast agent ratio in the coating during transit to a target site for therapeutic intervention. 10 Furthermore, the adherent layer may function to facilitate rapid release of coating layer components off the device surface upon contact with tissues at the target site. In other embodiments, the device may include a top layer. The top layer may prevent loss of the drug layer before it is brought 15 into contact with target tissues, for example during transit of the balloon 12 to the site of therapeutic intervention or during the first moments of inflation of balloon 12 before coating layer 20 is pressed into direct contact with target tissue. In one embodiment, the therapeutic agent in the coating layer is 20 lipophilic or water-insoluble.

In embodiments of the coatings for medical devices of the present invention, the lipophilic or water-insoluble therapeutic agent is interdispersed in the matrix or dispersion of the contrast agent and the additive in the coating layer overlying 25 the medical device.

In one embodiment, the concentration density of the at least one therapeutic agent applied to the surface of the medical device is from about 1 to $20~\mu g/mm^2$, or more preferably from about 2 to $6~\mu g/mm^2$. In one embodiment, the ratio by weight of the therapeutic agent to the contrast agent in the layer is from about 0.05 to 100, for example, from about 0.1 to 5, from 0.5 to 3, and further for example, from about 0.8 to 1.2. In one embodiment, the ratio by weight of the drug to the additive in the layer is from about 0.05 to 100, for example, 35 from about 0.1 to 5, from 0.5 to 2, and further for example, from about 0.8 to 1.2

In other embodiments, the layer may include a therapeutic agent, a contrast agent, and more than one additive. For example, one additive may serve to improve balloon adhesion 40 of the contrast agent or of another additive that is superior at promoting tissue uptake of drug. Alternatively, one additive may decrease balloon adhesion of another additive, in order to accelerate elution of the therapeutic agent off the surface of the device during brief deployment at the target site.

In another embodiment, the device comprises two layers applied to an exterior surface of the medical device, and particularly a balloon catheter, for example. The first layer comprises a therapeutic agent. The first layer may optionally comprise a contrast agent and an additive or additives. The 50 second layer comprises a contrast agent and an additive or additives. The second layer may optionally include at least a therapeutic agent. When the first and second layers both contain a therapeutic agent, the content of the therapeutic agent in the second layer is lower than the content of the therapeutic 55 agent in the first layer. In one embodiment, the second layer is overlying the first layer. In this arrangement, the second layer can prevent drug loss during deployment of the medical device into body passageways, for example, as a balloon catheter traverses the tortuous anatomy to a tissue site in the 60 vasculature.

In another embodiment, the device comprises two layers applied to an exterior surface of the medical device, and particularly a balloon catheter, for example. The first layer comprises a therapeutic agent. The first layer may optionally 65 comprise a contrast agent and an additive or additives. The second layer comprises a contrast agent and an additive or

26

additives. The second layer may optionally include at least a therapeutic agent. When the first and second layers both contain a therapeutic agent, the content of the therapeutic agent in the first layer is lower than the content of the therapeutic agent in the second layer. In one embodiment, the second layer is overlying the first layer. This arrangement is useful, for example, in the case of a therapeutic agent that adheres too tightly to the balloon surface to rapidly elute off the balloon when inflated at the target site. In this arrangement, the first layer functions to facilitate rapid release of the bulk of drug, which is in the second layer, off the surface of the device while it is inflated at the target site of therapeutic intervention.

In other embodiments, two or more therapeutic agents are used in combination in the drug-additive and contrast agent layer.

In a further embodiment, the device having a two layer coating may optionally include an adherent layer. The adherent layer does not contain a therapeutic agent. For example, as shown in the embodiment depicted in FIG. 2C, the balloon 12 is coated with an adherent layer 22. A first layer 26 that comprises a therapeutic agent and optionally a contrast agent and an additive or additives is overlying the adherent layer 22. A second layer 28 that comprises a contrast agent and an additive and optionally a therapeutic agent is overlying the first layer 26. The adherent layer improves the adherence of the first layer to the exterior surface of the medical device and protects the integrity of the first layer. For example, if drug, contrast agent, and additive or additives in the first layer differ in their strength of adherence to the medical device, the adherent layer may prevent differential loss of components and maintain drug-to-additive, drug-to-contrast agent ratio, contrast agent-to-additive ratio, and additive-to-additive ratio in the first and second layers during transit to a target site for therapeutic intervention. Furthermore, the adherent layer may function to facilitate rapid elution of coating layer off the device surface upon contact with tissues at the target site. In one embodiment, the first layer, the second layer, and the adherent layer each contain an additive or contrast agent.

Optionally, post-treatment with dimethylsulfoxide (DMSO) or other solvent may be advantageous since DMSO may further enhance penetration and absorption of drug into tissue. DMSO displaces water from the lipid head groups and protein domains of the membrane lipid bilayer of target cells to indirectly loosen the lipid structure, accelerating drug absorption and penetration.

In a further embodiment, the present invention relates to a pharmaceutical composition for treating a diseased body lumen or cavities after surgical or interventional procedures (PTCA, PTA, stent placement, excision of diseased tissue such as cancer, and relieving or treating stenosis), wherein the pharmaceutical composition comprises a therapeutic agent, a contrast agent, and an additive, wherein the additive comprises a hydrophilic part and a drug affinity part, wherein the drug affinity part is a hydrophobic part and/or has an affinity to the therapeutic agent by hydrogen bonding and/or van der Waals interactions, and wherein the therapeutic agent is not enclosed in micelles or liposomes or encapsulated in polymer particles.

In another embodiment, a method of preventing complications or recurrence of disease (such as cancer or restenosis) after a surgical or interventional procedure such as PTCA, PTA, stent deployment, stenosis or plaque removal by debulking, atherectomy, or laser procedures, the pharmaceutical composition is locally delivered at or near the site of intervention by means of a coated medical device (such as a drug-coated balloon), or by spray, by injection, or by deposition. For example, the pharmaceutical composition may be

delivered by spray, injection, balloon or other method of deposition, into cavities created by surgical removal of cancer tissue in order to reduce the risk of recurrence. As another example, a method for delivering the pharmaceutical composition comprises inserting a medical device (such as guide 5 catheter or a drug infusion catheter) into the blood to inject the pharmaceutical composition after a vascular intervention such as PTCA, PTA, or stent placement to prevent restenosis, wherein the pharmaceutical composition comprises a therapeutic agent, a contrast agent, and an additive, wherein the additive comprises a hydrophilic part and a drug affinity part, wherein the drug affinity part is a hydrophobic part and/or has an affinity to the therapeutic agent by hydrogen bonding and/or Van der Waals interactions, and wherein the therapeutic agent is not enclosed in micelles or liposomes or encap- 15 sulated in polymer particles.

Many embodiments of the present invention are particularly useful for treating vascular disease and for reducing stenosis and late luminal loss, or are useful in the manufacture of devices for that purpose.

Contrast Agent

X-ray contrast agents for intravascular injection are based upon the triiodobenzene ring substituted with two or three additional hydrophilic groups. In the case of biliary contrast agents (compounds that are taken up by the liver and excreted 25 mainly by the biliary tract), two hydrophilic groups are introduced. For angiographic/urographic agents (compounds that stay within the extravascular distribution volume and are excreted by the kidneys), three hydrophilic groups are introduced. The monomers are exclusively derived from ami- 30 noisophathalic acid. They only differ by their side-chains, which determine their physiochemical characteristics such as solubility, hydrophilicity, viscosity, and osmolality. Many of these agents contain covalently-bonded iodine. The aqueous solubility of X-ray contrast agents is generally extremely 35 high being in the order of 1000 mg/ml. Most preparations of X-ray contrast agents are over-saturated solutions.

The contrast agent in embodiments of the present invention includes iobitridol, iohexol, iomeprol, iopamidol, iopentol, iopromide, ioversol, ioxilan, iotrolan, iodixanol, ioxaglate, 40 and their derivatives. These are provided by way of example, and there are many other contrast agents known in the art that are useful in embodiments of the present invention.

Additive

The additive of embodiments of the present invention has 45 two parts. One part is hydrophilic and the other part is a drug affinity part. The drug affinity part is a hydrophobic part and/or has affinity to the therapeutic agent by hydrogen bonding and/or charge and/or van der Waals interactions. The drug affinity part of the additive may bind the lipophilic drug, such 50 as rapamycin or paclitaxel. In embodiments of the present invention, the additive is interdispersed with the lipophilic or water-insoluble drug and the contrast agent in the coating of a medical device. By nature of its two parts, the additives of embodiments of the present invention have affinity to both the 55 hydrophilic contrast agent and to the lipophilic or waterinsoluble therapeutic agent. The additive improves the compatability of the therapeutic agent and the contrast agent in the coating solution and coating layer. The additive improves the physical properties of the coating, its ability to resist flaking 60 or physical disruption, and it improves and preserves coating integrity and uniformity and consistency of drug distribution in the coating.

The hydrophilic portion may also function to accelerate diffusion and increase permeation of the drug into tissue. It 65 may facilitate rapid movement of drug off the medical device during deployment at the target site by preventing hydropho-

bic drug molecules from clumping to each other and to the surface of the device, increasing drug solubility in interstitial spaces, and/or accelerating drug passage through polar head groups to the lipid bilayer of cell membranes of target tissues.

The additives of embodiments of the present invention have two parts that function together to improve the compatability of contrast agent with the therapeutic agent in the coating and to improve the physical properties of the coating. Since one part of the additive has affinity to contrast agent and the other part has affinity to lipophilic or water-insoluble drug, the additives of embodiments of the present invention improve the compatability of these agents in the coating layer. The additives thereby improve the coating layer's resistance to physical disruption and the uniformity and consistency of drug distribution in and integrity of the coating. The additives of embodiments of the present invention may also facilitate rapid release of drug off the device surface and uptake by target tissue during deployment (by accelerating drug contact with tissues for which drug has high affinity) while preventing 20 the premature release of drug from the device surface prior to device deployment at the target site.

In embodiments of the present invention, the therapeutic agent, the contrast agent, and additive are rapidly released after the medical device is brought into contact with tissue, and the therapeutic agent is readily absorbed by tissue. For example, certain embodiments of devices of the present invention include drug coated balloon catheters that deliver a lipophilic anti-proliferative pharmaceutical (such as paclitaxel or rapamycin) to vascular tissue through brief, direct pressure contact at high drug concentration during balloon angioplasty. The lipophilic drug is preferentially retained in target tissue at the delivery site, where it inhibits hyperplasia and restenosis yet allows endothelialization. In these embodiments, coating formulations of the present invention not only facilitate rapid release of drug from the balloon surface and transfer of drug into target tissues during deployment, but also prevent drug from diffusing away from the device during transit through tortuous arterial anatomy prior to reaching the target site and from exploding off the device during the initial phase of balloon inflation, before the drug coating is pressed into direct contact with the surface of the vessel wall.

The additive according to certain embodiments, has a drug affinity part and a hydrophilic part. The drug affinity part is a hydrophobic part and/or has an affinity to the therapeutic agent by hydrogen bonding and/or van der Waals interactions. The drug affinity part may include aliphatic and aromatic organic hydrocarbon compounds, such as benzene, toluene, and alkanes, among others. These parts are not water soluble. They may bind both hydrophobic drug, with which they share structural similarities, and lipids of cell membranes. The drug affinity part may include functional groups that can form hydrogen bonds with drug and with itself. The hydrophilic part may include hydroxyl groups, amine groups, amide groups, carbonyl groups, carboxylic acid and anhydrides, ethyl oxide, ethyl glycol, polyethylene glycol, ascorbic acid, amino acid, amino alcohol, glucose, sucrose, sorbitan, glycerol, polyalcohol, phosphates, sulfates, organic salts and their substituted molecules, among others. One or more hydroxyl, carboxyl, acid, amide or amine groups, for example, may be advantageous since they easily displace water molecules that are hydrogen-bound to polar head groups and surface proteins of cell membranes and may function to remove this barrier between hydrophobic drug and cell membrane lipid. These parts can dissolve in water and polar solvents. These additives are not oils, lipids, or polymers. The therapeutic agent is not enclosed in micelles or liposomes or encapsulated in polymer particles. The additives of embodiments of the

present invention have components to both bind drug and contrast agent, improving the physical properties of the coating and facilitating the rapid movement of drug off the surface of the medical device during deployment and into target tissues.

The additives in embodiments of the present invention are surfactants and chemical compounds with one or more hydroxyl, amino, carbonyl, carboxyl, acid, amide or ester moieties. The surfactants include ionic, nonionic, aliphatic, and aromatic surfactants. The chemical compounds with one 10 or more hydroxyl, amino, carbonyl, carboxyl, acid, amide or ester moieties are chosen from amino alcohols, hydroxyl carboxylic acid and anhydrides, ethyl oxide, ethyl glycols, amino acids, peptides, proteins, sugars, glucose, sucrose, sorbitan, glycerol, polyalcohol, phosphates, sulfates, organic 15 acids, esters, salts, vitamins, and their substituted molecules.

As is well known in the art, the terms "hydrophilic" and "hydrophobic" are relative terms. To function as an additive in exemplary embodiments of the present invention, the compound includes polar or charged hydrophilic moieties and 20 moieties with affinity to the therapeutic agent, such as non-polar, hydrophobic or lipophilic moieties or moieties that form hydrogen bonds and/or van der Waals interactions with drug.

An empirical parameter commonly used in medicinal 25 chemistry to characterize the relative hydrophilicity and hydrophobicity of pharmaceutical compounds is the partition coefficient, P, the ratio of concentrations of unionized compound in the two phases of a mixture of two immiscible solvents, usually octanol and water, such that P=([solute] 30 octanol/[solute]water). Compounds with higher log Ps are more hydrophobic, while compounds with lower log Ps are more hydrophilic. Lipinski's rule suggests that pharmaceutical compounds having log P<5 are typically more membrane permeable. For purposes of certain embodiments of the 35 present invention, it is preferable that the additive has log P less than log P of the drug to be formulated (as an example, log P of paclitaxel is 7.4). A greater log P difference between the drug and the additive can facilitate phase separation of drug. For example, if log P of the additive is much lower than 40 log P of the drug, the additive may accelerate the release of drug in an aqueous environment from the surface of a device to which drug might otherwise tightly adhere, thereby accelerating drug delivery to tissue during brief deployment at the site of intervention. In certain embodiments of the present 45 invention, log P of the additive is negative. In other embodiments, log P of the additive is less than log P of the drug While a compound's octanol-water partition coefficient P or log P is useful as a measurement of relative hydrophilicity and hydrophobicity, it is merely a rough guide that may be useful in 50 defining suitable additives for use in embodiments of the present invention.

Suitable additives that can be used in embodiments of the present invention include, without limitation, organic and inorganic pharmaceutical excipients, natural products and 55 derivatives thereof (such as sugars, vitamins, amino acids, peptides, proteins, and fatty acids), low molecular weight oligomers, surfactants (anionic, cationic, non-ionic, and ionic), and mixtures thereof. The following detailed list of additives useful in the present invention is provided for exemplary purposes only and is not intended to be comprehensive. Many other additives may be useful for purposes of the present invention.

Surfactants

The surfactant can be any surfactant suitable for use in 65 pharmaceutical compositions. Such surfactants can be anionic, cationic, zwitterionic or non-ionic. Mixtures of sur-

30

factants are also within the scope of the invention, as are combinations of surfactant and other additives. Surfactants often have one or more long aliphatic chains such as fatty acids that may insert directly into lipid bilayers of cell membranes to form part of the lipid structure, while other components of the surfactants loosen the lipid structure and enhance drug penetration and absorption.

An empirical parameter commonly used to characterize the relative hydrophilicity and hydrophobicity of surfactants is the hydrophilic-lipophilic balance ("HLB" value). Surfactants with lower HLB values are more hydrophobic, and have greater solubility in oils, while surfactants with higher HLB values are more hydrophilic, and have greater solubility in aqueous solutions. Using HLB values as a rough guide, hydrophilic surfactants are generally considered to be those compounds having an HLB value greater than about 10, as well as anionic, cationic, or zwitterionic compounds for which the HLB scale is not generally applicable. Similarly, hydrophobic surfactants are compounds having an HLB value less than about 10. In certain embodiments of the present invention, a higher HLB value is preferred, since increased hydrophilicity may facilitate release of hydrophobic drug from the surface of the device. In one embodiment, the HLB of the surfactant additive is higher than 10. In another embodiment, the additive HLB is higher than 14. Alternatively, surfactants having lower HLB may be preferred when used to prevent drug loss prior to device deployment at the target site, for example in a top coat over a drug layer that has a very hydrophilic additive.

It should be understood that the HLB value of a surfactant is merely a rough guide generally used to enable formulation of industrial, pharmaceutical and cosmetic emulsions, for example. For many important surfactants, including several polyethoxylated surfactants, it has been reported that HLB values can differ by as much as about 8 HLB units, depending upon the empirical method chosen to determine the HLB value (Schott, J. Pharm. Sciences, 79(1), 87-88 (1990)). Keeping these inherent difficulties in mind, and using HLB values as a guide, surfactants may be identified that have suitable hydrophilicity or hydrophobicity for use in embodiments of the present invention, as described herein.

PEG-Fatty Acids and PEG-Fatty Acid Mono and Diesters Although polyethylene glycol (PEG) itself does not function as a surfactant, a variety of PEG-fatty acid esters have useful surfactant properties. Among the PEG-fatty acid monoesters, esters of lauric acid, oleic acid, and stearic acid are most useful in embodiments of the present invention. Preferred hydrophilic surfactants include PEG-8 laurate, PEG-8 oleate, PEG-8 stearate, PEG-9 oleate, PEG-10 laurate, PEG-10 oleate, PEG-12 laurate, PEG-12 oleate, PEG-15 oleate, PEG-20 laurate and PEG-20 oleate. The HLB values are in the range of 4-20.

Polyethylene glycol fatty acid diesters are also suitable for use as surfactants in the compositions of embodiments of the present invention. Most preferred hydrophilic surfactants include PEG-20 dilaurate, PEG-20 dioleate, PEG-20 distearate, PEG-32 dilaurate and PEG-32 dioleate. The HLB values are in the range of 5-15.

In general, mixtures of surfactants are also useful in embodiments of the present invention, including mixtures of two or more commercial surfactants as well as mixtures of surfactants with another additive or additives. Several PEG-fatty acid esters are marketed commercially as mixtures or mono- and diesters.

Polyethylene Glycol Glycerol Fatty Acid Esters

Preferred hydrophilic surfactants are PEG-20 glyceryl laurate, PEG-30 glyceryl laurate, PEG-40 glyceryl laurate, PEG-20 glyceryl oleate, and PEG-30 glyceryl oleate.

Alcohol-Oil Transesterification Products

A large number of surfactants of different degrees of hydrophobicity or hydrophilicity can be prepared by reaction of alcohols or polyalcohol with a variety of natural and/or hydrogenated oils. Most commonly, the oils used are castor oil or hydrogenated castor oil, or an edible vegetable oil such as corn oil, olive oil, peanut oil, palm kernel oil, apricot kernel oil, or almond oil. Preferred alcohols include glycerol, propylene glycol, ethylene glycol, polyethylene glycol, sorbitol, and pentaerythritol. Among these alcohol-oil transesterified surfactants, preferred hydrophilic surfactants are PEG-35 castor oil (Incrocas-35), PEG-40 hydrogenated castor oil (Cremophor RH 40), PEG-25 trioleate (TAGAT® TO), PEG-60 corn glycerides (Crovol M70), PEG-60 almond oil (Crovol A70), PEG-40 palm kernel oil (Crovol PK70), PEG-50 castor 20 oil (Emalex C-50), PEG-50 hydrogenated castor oil (Emalex HC-50), PEG-8 caprylic/capric glycerides (Labrasol), and PEG-6 caprylic/capric glycerides (Softigen 767). Preferred hydrophobic surfactants in this class include PEG-5 hydrogenated castor oil, PEG-7 hydrogenated castor oil, PEG-9 25 hydrogenated castor oil, PEG-6 corn oil (Labrafil® M 2125 CS), PEG-6 almond oil (Labrafil® M 1966 CS), PEG-6 apricot kernel oil (Labrafil® M 1944 CS), PEG-6 olive oil (Labrafil® M 1980 CS), PEG-6 peanut oil (Labrafil® M 1969 CS), PEG-6 hydrogenated palm kernel oil (Labrafil® M 2130 BS), 30 PEG-6 palm kernel oil (Labrafil® M 2130 CS), PEG-6 triolein (Labrafil®b M 2735 CS), PEG-8 corn oil (Labrafil® WL 2609 BS), PEG-20 corn glycerides (Crovol M40), and PEG-20 almond glycerides (Crovol A40).

Polyglyceryl Fatty Acids

Polyglycerol esters of fatty acids are also suitable surfactants for use in embodiments of the present invention. Among the polyglyceryl fatty acid esters, preferred hydrophobic surfactants include polyglyceryl oleate (Plurol Oleique), polyglyceryl-2 dioleate (Nikkol DGDO), polyglyceryl-10 tri- 40 oleate, polyglyceryl stearate, polyglyceryl laurate, polyglyceryl myristate, polyglyceryl palmitate, and polyglyceryl linoleate. Preferred hydrophilic surfactants include polyglyceryl-10 laurate (Nikkol Decaglyn 1-L), polyglyceryl-10 oleate (Nikkol Decaglyn 1-0), and polyglyceryl-10 45 mono, dioleate (Caprol® PEG 860), polyglyceryl-10 stearate, polyglyceryl-10 laurate, polyglyceryl-10 myristate, polyglyceryl-10 palmitate, polyglyceryl-10 linoleate, polyglyceryl-6 stearate, polyglyceryl-6 laurate, polyglyceryl-6 myristate, polyglyceryl-6 palmitate, and polyglyceryl-6 50 linoleate. Polyglyceryl polyricinoleates (Polymuls) are also preferred surfactants.

Propylene Glycol Fatty Acid Esters

Esters of propylene glycol and fatty acids are suitable surfactants for use in embodiments of the present invention. 55 in embodiments of the present invention. Among these esters, In this surfactant class, preferred hydrophobic surfactants include propylene glycol monolaurate (Lauroglycol FCC), propylene glycol ricinoleate (Propymuls), propylene glycol monooleate (Myverol P-O6), propylene glycol dicaprylate/ dicaprate (Captex® 200), and propylene glycol dioctanoate 60 (Captex® 800).

Sterol and Sterol Derivatives

Sterols and derivatives of sterols are suitable surfactants for use in embodiments of the present invention. Preferred derivatives include the polyethylene glycol derivatives. A 65 preferred surfactant in this class is PEG-24 cholesterol ether (Solulan C-24).

32

Polyethylene Glycol Sorbitan Fatty Acid Esters

A variety of PEG-sorbitan fatty acid esters are available and are suitable for use as surfactants in embodiments of the present invention. Among the PEG-sorbitan fatty acid esters, preferred surfactants include PEG-20 sorbitan monolaurate (Tween-20), PEG-20 sorbitan monopalmitate (Tween-40), PEG-20 sorbitan monostearate (Tween-60), and PEG-20 sorbitan monooleate (Tween-80). Laurate esters are preferred because they have a short lipid chain compared with oleate esters, increasing drug absorption.

Polyethylene Glycol Alkyl Ethers

Ethers of polyethylene glycol and alkyl alcohols are suitable surfactants for use in embodiments of the present invention. Preferred ethers include PEG-3 oleyl ether (Volpo 3) and PEG-4 lauryl ether (Brij 30).

Sugar and its Derivatives

Sugar derivatives are suitable surfactants for use in embodiments of the present invention. Preferred surfactants in this class include sucrose monopalmitate, sucrose monolaurate, decanovl-N-methylglucamide, n-decyl-β-D-glucopyranoside, n-decyl-β-D-maltopyranoside, n-dodecyl-β-D-glucopyranoside, n-dodecyl-β-D-maltoside, heptanoyl-Nmethylglucamide, n-heptyl-β-D-glucopyranoside, n-heptyl- β -D-thioglucoside, n-hexyl-β-D-glucopyranoside, nonanoyl-N-methylglucamide, n-noyl-β-D-glucopyranoside, octanoyl-N-methylglucamide, n-octyl-β-D-glucopyranoside, and octyl-β-D-thioglucopyranoside.

Polyethylene Glycol Alkyl Phenols

Several PEG-alkyl phenol surfactants are available, such as PEG-10-100 nonyl phenol and PEG-15-100 octyl phenol ether, Tyloxapol, octoxynol, nonoxynol, and are suitable for use in embodiments of the present invention.

Polyoxyethylene-Polyoxypropylene (POE-POP) Block Copolymers

The POE-POP block copolymers are a unique class of polymeric surfactants. The unique structure of the surfactants, with hydrophilic POE and hydrophobic POP moieties in well-defined ratios and positions, provides a wide variety of surfactants suitable for use in embodiments of the present invention. These surfactants are available under various trade names, including Synperonic PE series (ICI); Pluronic® series (BASF), Emkalyx, Lutrol (BASF), Supronic, Monolan, Pluracare, and Plurodac. The generic term for these polymers is "poloxamer" (CAS 9003-11-6). These polymers have the formula:

 $HO(C_2H_4O)_a(C_3H_6O)_b(C_2H_4O)_aH$ where "a" and "b" denote the number of polyoxyethylene and polyoxypropylene units, respectively.

Preferred hydrophilic surfactants of this class include Poloxamers 108, 188, 217, 238, 288, 338, and 407. Preferred hydrophobic surfactants in this class include Poloxamers 124, 182, 183, 212, 331, and 335.

Sorbitan Fatty Acid Esters

Sorbitan esters of fatty acids are suitable surfactants for use preferred hydrophobic surfactants include sorbitan monolaurate (Arlacel 20), sorbitan monopalmitate (Span-40), and sorbitan monooleate (Span-80), sorbitan monostearate.

The sorbitan monopalmitate, an amphiphilic derivative of Vitamin C (which has Vitamin C activity), can serve two important functions in solubilization systems. First, it possesses effective polar groups that can modulate the microenvironment. These polar groups are the same groups that make vitamin C itself (ascorbic acid) one of the most water-soluble organic solid compounds available: ascorbic acid is soluble to about 30 wt/wt % in water (very close to the solubility of sodium chloride, for example). And second, when the pH

increases so as to convert a fraction of the ascorbyl palmitate to a more soluble salt, such as sodium ascorbyl palmitate.

Ionic Surfactants

Ionic surfactants, including cationic, anionic and zwitterionic surfactants, are suitable hydrophilic surfactants for use 5 in embodiments of the present invention. Preferred ionic surfactants include quaternary ammonium salts, fatty acid salts and bile salts. Specifically, preferred ionic surfactants include benzalkonium chloride, benzethonium chloride, cetylpyridinium chloride, docecyl trimethyl ammonium bromide, sodium docecylsulfates, dialkyl methylbenzyl ammonium chloride, edrophonium chloride, domiphen bromide, dialkylesters of sodium sulfonsuccinic acid, sodium dioctyl sulfosuccinate, sodium cholate, and sodium taurocholate. These quaternary ammonium salts are preferred additives. They can 15 be dissolved in both organic solvents (such as ethanol, acetone, and toluene) and water. This is especially useful for medical device coatings because it simplifies the preparation and coating process and has good adhesive properties. Water insoluble drugs are commonly dissolved in organic solvents. 20

Chemical Compounds with One or More Hydroxyl, Amino, Carbonyl, Carboxyl, Acid, Amide or Ester Moieties

The chemical compounds with one or more hydroxyl, amino, carbonyl, carboxyl, acid, amide or ester moieties include amino alcohols, hydroxyl carboxylic acid, ester, and 25 anhydrides, hydroxyl ketone, hydroxyl lactone, hydroxyl ester, sugar phosphate, sugar sulfate, ethyl oxide, ethyl glycols, amino acids, peptides, proteins, sorbitan, glycerol, polyalcohol, phosphates, sulfates, organic acids, esters, salts, vitamins, combinations of amino alcohols and organic acids, and 30 their substituted molecules. Hydrophilic chemical compounds with one or more hydroxyl, amino, carbonyl, carboxyl, acid, amide or ester moieties having molecular weight less than 5,000-10,000 are preferred in certain embodiments. In other embodiments, molecular weight of the additive with 35 one or more hydroxyl, amino, carbonyl, carboxyl, acid, amide, or ester moieties is preferably less than 1000-5,000, or more preferably less than 750-1,000, or most preferably less than 750. In these embodiments, the molecular weight of the additive is preferred to be less than that of the drug to be 40 delivered. The molecular weight of the additive is preferred to be higher than 80 since molecules with molecular weight less than 80 very easily evaporate and do not stay in the coating of a medical device. Small molecules can diffuse quickly. They can release themselves easily from the delivery balloon, 45 accelerating release of drug, and they can diffuse away from drug when the drug binds tissue of the body lumen.

Fat-Soluble Vitamins and Salts Thereof

Vitamins A, D, E and K in many of their various forms and provitamin forms are considered as fat-soluble vitamins and 50 in addition to these a number of other vitamins and vitamin sources or close relatives are also fat-soluble and have polar groups, and relatively high octanol-water partition coefficients. Clearly, the general class of such compounds has a history of safe use and high benefit to risk ratio, making them 55 useful as additives in embodiments of the present invention.

The following examples of fat-soluble vitamin derivatives and/or sources are also useful as additives: Alpha-tocopherol, beta-tocopherol, gamma-tocopherol, delta-tocopherol, tocopherol acetate, ergosterol, 1-alpha-hydroxycholecal-ciferol, 60 vitamin D2, vitamin D3, alpha-carotene, beta-carotene, gamma-carotene, vitamin A, fursultiamine, methylolriboflavin, octotiamine, prosultiamine, riboflavine, vintiamol, dihydrovitamin K1, menadiol diacetate, menadiol dibutyrate, menadiol disulfate, menadiol, vitamin K1, vitamin K1 oxide, 65 vitamins K2, and vitamin K—S(II). Folic acid is also of this type, and although it is water-soluble at physiological pH, it

34

can be formulated in the free acid form. Other derivatives of fat-soluble vitamins useful in embodiments of the present invention may easily be obtained via well known chemical reactions with hydrophilic molecules.

Water-Soluble Vitamins and their Amphiphilic Derivatives Vitamins B, C, U, pantothenic acid, folic acid, and some of the menadione-related vitamins/provitamins in many of their various forms are considered water-soluble vitamins. These may also be conjugated or complexed with hydrophobic moieties or multivalent ions into amphiphilic forms having relatively high octanol-water partition coefficients and polar groups. Again, such compounds can be of low toxicity and high benefit to risk ratio, making them useful as additives in embodiments of the present invention. Salts of these can also be useful as additives in the present invention. Examples of water-soluble vitamins and derivatives include, without limitation, acetiamine, benfotiamine, pantothenic acid, cetotiamine, cycothiamine, dexpanthenol, niacinamide, nicotinic acid, pyridoxal 5-phosphate, nicotinamide ascorbate, riboflavin, riboflavin phosphate, thiamine, folic acid, menadiol diphosphate, menadione sodium bisulfite, menadoxime, vitamin B12, vitamin K5, vitamin K6, vitamin K6, and vitamin U. Also, as mentioned above, folic acid is, over a wide pH range including physiological pH, water-soluble, as a salt.

Compounds in which an amino or other basic group is present can easily be modified by simple acid-base reaction with a hydrophobic group-containing acid such as a fatty acid (especially lauric, oleic, myristic, palmitic, stearic, or 2-eth-ylhexanoic acid), low-solubility amino acid, benzoic acid, salicylic acid, or an acidic fat-soluble vitamin (such as riboflavin). Other compounds might be obtained by reacting such an acid with another group on the vitamin such as a hydroxyl group to form a linkage such as an ester linkage, etc. Derivatives of a water-soluble vitamin containing an acidic group can be generated in reactions with a hydrophobic group-containing reactant such as stearylamine or riboflavine, for example, to create a compound that is useful in embodiments of the present invention. The linkage of a palmitate chain to vitamin C yields ascorbyl palmitate.

Amino Acids and their Salts

Alanine, arginine, asparagines, aspartic acid, cysteine, cystine, glutamic acid, glutamine, glycine, histidine, proline, isoleucine, leucine, lysine, methionine, phenylalanine, serine, threonine, tryptophan, tyrosine, valine, and derivatives thereof are other useful additives in embodiments of the invention.

Certain amino acids, in their zwitterionic form and/or in a salt form with a monovalent or multivalent ion, have polar groups, relatively high octanol-water partition coefficients, and are useful in embodiments of the present invention. In the context of the present disclosure we take "low-solubility amino acid" to mean an amino acid which has a solubility in unbuffered water of less than about 4% (40 mg/ml). These include Cystine, tyrosine, tryptophan, leucine, isoleucine, phenylalanine, asparagine, aspartic acid, glutamic acid, and methionine.

Amino acid dimers, sugar-conjugates, and other derivatives are also useful. Through simple reactions well known in the art hydrophilic molecules may be joined to hydrophobic amino acids, or hydrophobic molecules to hydrophilic amino acids, to make additional additives useful in embodiments of the present invention.

Catecholamines, such as dopamine, levodopa, carbidopa, and DOPA, are also useful as additives.

Oligopeptides, Peptides and Proteins

Oligopeptides and peptides are useful as additives, since hydrophobic and hydrophilic amino acids may be easily

coupled and various sequences of amino acids may be tested to maximally facilitate permeation of tissue by drug.

Proteins are also useful as additives in embodiments of the present invention. Serum albumin, for example, is a preferred additive since it is water soluble and contains significant 5 hydrophobic parts to bind drug: paclitaxel is 89% to 98% protein-bound after human intravenous infusion, and rapamycin is 92% protein bound, primarily (97%) to albumin. Furthermore, paclitaxel solubility in PBS increases over 20-fold with the addition of BSA. Albumin is naturally present at high concentrations in serum and is thus very safe for human intravascular use.

Other useful proteins include, without limitation, other albumins. immunoglobulins, caseins, hemoglobins, lysozymes, immunoglobins, a-2-macroglobulin, fibronec- 15 tins, vitronectins, firbinogens, lipases, and the like.

Organic Acids and their Esters and Anhydrides

Examples are acetic acid and anhydride, benzoic acid and anhydride, diethylenetriaminepentaacetic acid dianhydride, ethylenediaminetetraacetic dianhydride, maleic acid and 20 anhydride, succinic acid and anhydride, diglycolic anhydride, glutaric anhydride, ascorbic acid, citric acid, tartaric acid, lactic acid, oxalic acid aspartic acid, nicotinic acid, 2-pyrrolidone-5-carboxylic acid, and 2-pyrrolidone.

These esters and anhydrides are soluble in organic solvents 25 such as ethanol, acetone, methylethylketone, ethylacetate. The water insoluble drugs can be dissolved in organic solvent with these esters and anhydrides, then coated easily on to the medical device, then hydrolyzed under high pH conditions. The hydrolyzed anhydrides or esters are acids or alcohols, 30 which are water soluble and can effectively carry the drugs off the device into the vessel walls.

Other Chemical Compounds with One or More Hydroxyl, Amine, Carbonyl, Carboxyl, or Ester Moieties

The additives include amino alcohols, alcohols, amines, 35 acids, amides and hydroxyl acids in both cyclo and linear aliphatic and aromatic groups. Examples are L-ascorbic acid and its salt, D-glucoascorbic acid and its salt, tromethamine, triethanolamine, diethanolamine, meglumine, glucamine, ketone, hydroxyl lactone, gluconolactone, glucoheptonolactone, glucooctanoic lactone, gulonic acid lactone, mannoic lactone, ribonic acid lactone, lactobionic acid, glucosamine, glutamic acid, benzyl alcohol, benzoic acid, hydroxybenzoic acid, propyl 4-hydroxybenzoate, lysine acetate salt, gentisic 45 acid, lactobionic acid, lactitol, sorbitol, glucose, ribose, arabinose, lyxose, xylose, fructose, mannose, glucitol, sugars, sugar phosphates, glucopyranose phosphate, sugar sulphates, sinapic acid, vanillic acid, vanillin, methyl paraben, propyl paraben, diethylene glycol, triethylene glycol, tetraethylene 50 glycol, xylitol, 2-ethoxyethanol, sugars, galactose, glucose, mannose, xylose, sucrose, lactose, maltose, sorbitol, cyclodextrin, (2-hydroxypropyl)-cyclodextrin, acetaminophen, ibuprofen, retinoic acid, lysine acetate, gentisic acid, catechin, catechin gallate, tiletamine, ketamine, propofol, lactic 55 acids, acetic acid, salts of any organic acid and amine described above, polyglycidol, glycerols, and derivatives thereof.

Combinations of additives are also useful for purposes of the present invention.

One embodiment comprises the combination or mixture of two hydrophilic additives, the first additive comprising a surfactant and the second additive comprising one of the chemical compounds with one or more hydroxyl, amine, carbonyl, carboxyl, or ester moieties

The combination or mixture of the surfactant and the small water-soluble molecule (the chemical compounds with one or

36

more hydroxyl, amine, carbonyl, carboxyl, or ester moieties) has advantages. Formulations comprising mixtures of the two additives with water-insoluble drug are in certain cases superior to either alone. The hydrophobic drugs bind small molecules more poorly than they do surfactants. They are often phase separated from small water-soluble molecules, which can lead to suboptimal coating uniformity and integrity. The water-insoluble drug has Log P higher than both that of the surfactant and that of small molecules. However, Log P of the surfactant is typically higher than Log P of the chemical compounds with one or more hydroxyl, amine, carbonyl, carboxyl, or ester moieties. The surfactant has a relatively high Log P (usually above 0) and the water soluble molecules have low Log P (usually below 0). Some surfactants, when used as additives in the present invention, adhere so strongly to the water-insoluble drug and the surface of the medical device that drug is not able to rapidly release from the surface of the medical device at the target site. On the other hand, some of the water-soluble small molecules (with one or more hydroxyl, amine, carbonyl, carboxyl, or ester moieties) adhere so poorly to the medical device that they release drug before it reaches the target site, for example, into serum during the transit of a coated balloon catheter to the site targeted for intervention. Surprisingly, by adjusting the ratio of the concentrations of the small hydrophilic molecules, the surfactant, and the contrast agent, the coating stability during transit and rapid drug release when inflated and pressed against tissues of the lumen wall at the target site of therapeutic intervention in certain cases is superior to a formulation comprising either additive or a contrast agent alone. Furthermore, the miscibility and compatibility of the water-insoluble drug and the contrast agent is improved by the presence of the surfactant. The surfactant also improves coating uniformity and integrity by its good adhesion to the drug and to contrast agent and to the small molecules. The long chain hydrophobic part of the surfactant binds drug tightly to drug while the hydrophilic part of the surfactant binds the contrast agent and also the small molecules.

The surfactants in the mixture or the combination include amine alcohols, glucoheptonic acid, glucomic acid, hydroxyl 40 all of the surfactants described herein for use in embodiments of the invention. The surfactant in the mixture is chosen from PEG fatty esters, PEG omega-3 fatty esters and alcohols, glycerol fatty esters, sorbitan fatty esters, PEG glyceryl fatty esters, PEG sorbitan fatty esters, sugar fatty esters, PEG sugar esters, Tween 20, Tween 40, Tween 60, Tween 80, p-isononylphenoxypolyglycidol, PEG laurate, PEG oleate, PEG stearate, PEG glyceryl laurate, PEG glyceryl oleate, PEG glyceryl stearate, polyglyceryl laurate, plyglyceryl oleate, polyglyceryl myristate, polyglyceryl palmitate, polyglyceryl-6 laurate, plyglyceryl-6 oleate, polyglyceryl-6 myristate, polyglyceryl-6 palmitate, polyglyceryl-10 laurate, plyglyceryl-10 oleate, polyglyceryl-10 myristate, polyglyceryl-10 palmitate, PEG sorbitan monolaurate, PEG sorbitan monolaurate, PEG sorbitan monooleate, PEG sorbitan stearate, PEG oleyl ether, PEG laurayl ether, octoxynol, monoxynol, tyloxapol, sucrose monopalmitate, sucrose monolaudecanoyl-N-methylglucamide, glucopyranoside, n-decyl-β-D-maltopyranoside, n-dodecylβ-D-glucopyranoside, n-dodecyl-β-D-maltoside, heptanoyln-heptyl-β-D-glucopyranoside, 60 N-methylglucamide, n-heptyl-β-D-thioglucoside, n-hexyl-β-D-glucopyranoside, nonanoyl-N-methylglucamide, n-noyl-β-D-glucopyranoside, octanoyl-N-methylglucamide, n-octyl-β-D-glucopyranoside, octyl-β-D-thioglucopyranoside and their derivatives.

The chemical compound with one or more hydroxyl, amine, carbonyl, carboxyl, or ester moieties in the mixture or the combination include all of the chemical compounds with

one or more hydroxyl, amine, carbonyl, carboxyl, or ester moieties described for use in embodiments of the invention. The chemical compound with one or more hydroxyl, amine, carbonyl, carboxyl, or ester moieties in the mixture has at least one hydroxyl group in one of the embodiments in the 5 inventions. More than four hydroxyl groups are preferred in one embodiment. The chemical compound with one or more hydroxyl, amine, carbonyl, carboxyl, or ester moieties in the mixture is chosen from L-ascorbic acid and its salt, D-glucoascorbic acid and its salt, tromethamine, triethanolamine, 10 diethanolamine, meglumine, glucamine, amine alcohols, glucoheptonic acid, glucomic acid, hydroxyl ketone, hydroxyl lactone, gluconolactone, glucoheptonolactone, glucooctanoic lactone, gulonic acid lactone, mannoic lactone, ribonic acid lactone, lactobionic acid, glucosamine, glutamic acid, 15 benzyl alcohol, benzoic acid, hydroxybenzoic acid, propyl 4-hydroxybenzoate, lysine acetate salt, gentisic acid, lactobionic acid, lactitol, sorbitol, glucose, ribose, arabinose, lyxose, xylose, fructose, mannose, glucitol, sugars, sugar phosphates, glucopyranose phosphate, sugar sulphates, sinapic 20 acid, vanillic acid, vanillin, methyl paraben, propyl paraben, diethylene glycol, triethylene glycol, tetraethylene glycol, xylitol, 2-ethoxyethanol, sugars, galactose, glucose, mannose, xylose, sucrose, lactose, maltose, cyclodextrin, sorbitol, (2-hydroxypropyl)-cyclodextrin, acetaminophen, ibuprofen, 25 retinoic acid, lysine acetate, gentisic acid, catechin, catechin gallate, tiletamine, ketamine, propofol, lactic acids, acetic acid, salts of any organic acid and amine described above, polyglycidol, glycerols, and derivatives thereof.

Preferred additives include p-isononylphenoxypolyglyci- 30 dol, PEG glyceryl oleate, PEG glyceryl stearate, polyglyceryl laurate, plyglyceryl oleate, polyglyceryl myristate, polyglyceryl palmitate, polyglyceryl-6 laurate, plyglyceryl-6 oleate, polyglyceryl-6 myristate, polyglyceryl-6 palmitate, polyglyceryl-10 laurate, plyglyceryl-10 oleate, polyglyceryl-10 35 myristate, polyglyceryl-10 palmitate, PEG sorbitan monolaurate, PEG sorbitan monolaurate, PEG sorbitan monooleate, PEG sorbitan stearate, octoxynol, monoxynol, tyloxapol, sucrose monopalmitate, sucrose monolaurate, decanoyl-N-methylglucamide, n-decyl-β-D-glucopyrano- 40 side, n-decyl-β-D-maltopyranoside, n-dodecyl-β-D-glucopyranoside, n-dodecyl-β-D-maltoside, heptanoyl-N-methylglucamide, n-heptyl-β-D-glucopyranoside, n-heptyl-β-Dthioglucoside, n-hexyl-β-D-glucopyranoside, nonanoyl-Nmethylglucamide, n-noyl-β-D-glucopyranoside, octanoyl- 45 N-methylglucamide, n-octyl-β-D-glucopyranoside, octyl-β-D-thioglucopyranoside: cystine, tyrosine, tryptophan, leucine, isoleucine, phenylalanine, asparagine, aspartic acid, glutamic acid, and methionine (amino acids); cetotiamine; cycothiamine, dexpanthenol, niacinamide, nicotinic acid and 50 its salt, pyridoxal 5-phosphate, nicotinamide ascorbate, riboflavin, riboflavin phosphate, thiamine, folic acid, menadiol diphosphate, menadione sodium bisulfite, menadoxime, vitamin B12, vitamin K5, vitamin K6, vitamin K6, and vitamin U (vitamins); albumin, immunoglobulins, caseins, hemoglo- 55 lysozymes, immunoglobins, a-2-macroglobulin, fibronectins, vitronectins, firbinogens, lipases, benzalkonium chloride, benzethonium chloride, docecyl trimethyl ammonium bromide, sodium docecylsulfates, dialkyl methylbenzyl ammonium chloride, and dialkylesters of sodium sulfonsuc- 60 cinic acid, L-ascorbic acid and its salt, D-glucoascorbic acid and its salt, tromethamine, triethanolamine, diethanolamine, meglumine, glucamine, amine alcohols, glucoheptonic acid, glucomic acid, hydroxyl ketone, hydroxyl lactone, gluconolactone, glucoheptonolactone, glucooctanoic lactone, 65 gulonic acid lactone, mannoic lactone, ribonic acid lactone, lactobionic acid, glucosamine, glutamic acid, benzyl alcohol,

benzoic acid, hydroxybenzoic acid, propyl 4-hydroxybenzoate, lysine acetate salt, gentisic acid, lactobionic acid, lactitol, sinapic acid, vanillic acid, vanillin, methyl paraben, propyl paraben, sorbitol, cyclodextrin, (2-hydroxypropyl)cyclodextrin, acetaminophen, ibuprofen, retinoic acid, lysine acetate, gentisic acid, catechin, catechin gallate, tiletamine, ketamine, propofol, lactic acids, acetic acid, salts of any organic acid and amine described above, polyglycidol, glycerols, and derivatives thereof. (chemical compounds with one or more hydroxyl, amino, carbonyl, carboxyl, or ester moieties). Some of these additives are both water-soluble and organic solvent-soluble. They have good adhesive properties and adhere to the surface of polyamide medical devices, such as balloon catheters. They may therefore be used in the adherent layer, top layer, and/or in the drug layer of embodiments of the present invention. The aromatic and aliphatic groups increase the solubility of water insoluble drugs in the coating solution, and the polar groups of alcohols and acids bind contrast agent and improve the physical properties of the coating layer overlying the medical device and accelerate drug release from the device and drug permeation into tissue during deployment.

Other preferred additives according to embodiments of the invention include the combination of an amino alcohol and an organic acid. Examples are lysine/glutamic acid, lysine acetate, lactobionic acid/meglumine, lactobionic acid/tromethanemine, lactic acid/meglumine, lactic acid/diethanolamine, lactic acid/tromethanemine, lactic acid/diethanolamine, gentisic acid/tromethanemine, gentisic acid/tromethanemine, vanillic acid/meglumine, vanillic acid/meglumine, vanillic acid/tromethanemine, benzoic acid/meglumine, benzoic acid/tromethanemine, benzoic acid/meglumine, acetic acid/meglumine, acetic acid/meglumine, acetic acid/meglumine, acetic acid/diethanolamine, acetic acid/diethanolamine, acetic acid/diethanolamine.

Other preferred additives according to embodiments of the invention include hydroxyl ketone, hydroxyl lactone, hydroxyl acid, hydroxyl ester, and hydroxyl amide. Examples are gluconolactone, D-glucoheptono-1,4-lactone, glucooctanoic lactone, gulonic acid lactone, mannoic lactone, erythronic acid lactone, ribonic acid lactone, glucuronic acid, gluconic acid, gentisic acid, lactobionic acid, lactic acid, acetaminophen, vanillic acid, sinapic acid, hydroxybenzoic acid, methyl paraben, propyl paraben, and derivatives thereof.

Other preferred additives that may be useful in embodiments of the present invention include riboflavin, riboflavin-phosphate sodium, Vitamin D3, folic acid (vitamin B9), vitamin 12, diethylenetriaminepentaacetic acid dianhydride, ethylenediaminetetraacetic dianhydride, maleic acid and anhydride, succinic acid and anhydride, diglycolic anhydride, glutaric anhydride, L-ascorbic acid, thiamine, nicotinamide, nicotinic acid, 2-pyrrolidone-5-carboxylic acid, cystine, tyrosine, tryptophan, leucine, isoleucine, phenylalanine, asparagine, aspartic acid, glutamic acid, and methionine and octyl- β -D-thioglucopyranoside.

From a structural point of view, these additives share structural similarities and are compatible with water insoluble drugs (such as paclitaxel and rapamycin). They often contain double bonds such as C=C, C=N, C=O in aromatic or aliphatic structures. These additives also contain amine, alcohol, ester, amide, anhydride, carboxylic acid, and/or hydroxyl groups. They may form hydrogen bonds and/or charge and/or van der Waals interactions with drug. They may also form hydrogen bonds with and have affinity for contrast agent. They are also useful in the top layer in the coating. Compounds containing one or more hydroxyl, carboxyl, or amine groups, for example, are especially useful as additives since

they facilitate drug release from the device surface and easily displace water next to the polar head groups and surface proteins of cell membranes and may thereby remove this barrier to hydrophobic drug permeability. They accelerate movement of a hydrophobic drug off the balloon to the lipid 5 layer of cell membranes and tissues for which it has very high affinity. They may also carry or accelerate the movement of drug off the balloon into more aqueous environments such as the interstitial space, for example, of vascular tissues that have been injured by balloon angioplasty or stent expansion. 10 Additives such as polyglyceryl fatty esters, ascorbic ester of fatty acids, sugar esters, alcohols and ethers of fatty acids have fatty chains that can integrate into the lipid structure of target tissue membranes, carrying drug to lipid structures. Some of the amino acids, vitamins and organic acids have 15 aromatic C=N groups as well as amino, hydroxyl, and carboxylic components to their structure. They have structural parts that can bind or complex with hydrophobic drug, such as paclitaxel or rapamycin, and they also have structural parts that facilitate tissue penetration by removing barriers 20 between hydrophobic drug and lipid structure of cell membranes.

For example, isononylphenylpolyglycidol (Olin-10 G and Surfactant-10G), PEG glyceryl monooleate, sorbitan monolaurate (Arlacel 20), sorbitan monopalmitate (Span-40), sor- 25 bitan monooleate (Span-80), sorbitan monostearate, polyglyceryl-10 oleate, polyglyceryl-10 laurate, polyglyceryl-10 palmitate, and polyglyceryl-10 stearate all have more than four hydroxyl groups in their hydrophilic part. These hydroxyl groups have very good affinity for the vessel wall and can displace hydrogen-bound water molecules. At the same time, they have long chains of fatty acid, alcohol, ether and ester that can both complex with hydrophobic drug and integrate into the lipid structure of the cell membranes to form the part of the lipid structure. This deformation or loosening 35 of the lipid membrane of target cells may further accelerate permeation of hydrophobic drug into tissue.

For another example, L-ascorbic acid, thiamine, maleic acids, niacinamide, and 2-pyrrolidone-5-carboxylic acid all have a very high water and ethanol solubility and a low 40 least one therapeutic agent applied to the surface of the medimolecular weight and small size. They also have structural components including aromatic C=N, amino, hydroxyl, and carboxylic groups. These structures have very good compatibility with paclitaxel and rapamycin and can increase the solubility of these water-insoluble drugs in water and enhance 45 their absorption into tissues. However, they often have poor adhesion to the surface of medical devices. They are therefore preferably used in combination with other additives in the drug layer and top layer where they are useful to enhance drug absorption. Vitamin D2 and D3 are especially useful because 50 they themselves have anti-restenotic effects and reduce thrombosis, especially when used in combination with pacli-

In one embodiment of the present invention, the additive is soluble in aqueous solvents and is soluble in organic solvents. 55 Oil, Fatty Acid and Lipid

In one embodiment, the coating layer overlying the surface of a medical device is comprised of a lipophilic or waterinsoluble therapeutic agent, a contrast agent, and one of an oil, a fatty acid, and a lipid. In one embodiment, a solution for 60 coating the surface of a medical device is comprised of a lipophilic or water-insoluble therapeutic agent, a contrast agent, and one of an oil, a fatty acid, and a lipid. In one embodiment, a pharmaceutical preparation is comprised of a lipophilic or water-insoluble therapeutic agent, a contrast agent, and one of an oil, a fatty acid, and a lipid, wherein the therapeutic agent is not encapsulated by liposomes or par40

ticles. In one embodiment, the one of an oil, a fatty acid, and a lipid is interdispersed with the lipophilic or water-insoluble drug and the contrast agent in the coating of a medical device. In certain embodiments, the contrast agent may disrupt the hydrophobic attractions between lipophilic drug and itself and the one of an oil, fatty acid, and lipid and the surface of the medical device and accelerate elution of the therapeutic agent off the device.

In these embodiments, the oil, the fatty acid and the lipid are hydrophobic. They are not soluble in water. The lipophilic or water-insoluble therapeutic agents, such as paclitaxel, rapamycin and their analogues, are soluble in the oil, fatty acid and lipid. The oil, fatty acid and lipid in embodiments of the invention herein include, for example, soybean oil, vegetable oil, flower oil, animal oil, marine oil, butterfat, coconut oil, palm oil, olive oil, peanut oil, fish oil, butanoic acid, hexanoic acid, octanoic acid, decanoic acid, dodecanoic acid, tetradecanoic acid, hexadecanoic acid, octadecanoic acid, octadecatrienoic acid, eicosanoic acid, eicosenoic acid, eicosatetraenoic acid, eicosapentaenoic acid, docosahexaenoic acid, tocotrienol, butyric acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, oleic acid, vaccenic acid, linoleic acid, alpha-linolenic acid, gamma-linolenic acid, behenic acid, erucic acid, lignoceric acid, natural or synthetic phospholipids, mono-, di-, or triacylglycerols, cardiolipin, phosphatidylglycerol, phosphatidic acid, phosphatidylcholine, alpha tocoferol, phosphatidylethanolamine, sphingomyelin, phosphatidylserine, phosphatidylinositol, dimyristoylphosphatidylcholine, dioleoylphosphatidylcholine, dipalmidistearoylphosphatidylcholine, toylphosphatidylcholine, phosphatidylethanolamines phosphatidylglycerols, sphingolipids, prostaglandins, gangliosides, neobee, niosomes and derivatives.

There are many other oils, fatty acids, and lipids known in the art that are useful in embodiments of the present inven-

In one embodiment, the concentration density of the at cal device is from about 1 to 20 μg/mm², or more preferably from about 2 to 6 µg/mm². In one embodiment, the concentration of the at least one additive applied to the surface of the medical device is from about 1 to 20 μg/mm². In one embodiment, the concentration of the contrast agent applied to the surface of the medical device is from about 1 to 20 μg/mm². The ratio of additive to drug by weight in the coating layer in embodiments of the present invention is about 0.05 to 20, preferably about 0.5 to 10, or more preferably about 0.8 to 5.

The relative amount of the therapeutic agent, the contrast agent, and the additive in the coating layer may vary depending on applicable circumstances. The optimal amount of the additive can depend upon, for example, the particular therapeutic agent and contrast agent and additive selected, the critical micelle concentration of the surface modifier, the hydrophilic-lipophilic-balance (HLB) of a surfactant or an additive's the octonol-water partition coefficient (P), the melting point of the additive, the water solubility of the additive and/or therapeutic agent, the surface tension of water solutions of the surface modifier, etc.

The additives are present in exemplary coating compositions of embodiments of the present invention in amounts such that upon dilution with an aqueous solution, the carrier forms a clear, aqueous dispersion or emulsion or solution, containing the hydrophobic therapeutic agent in aqueous and organic solutions. When the relative amount of surfactant is too great, the resulting dispersion is visibly "cloudy".

The optical clarity of the aqueous dispersion can be measured using standard quantitative techniques for turbidity assessment. One convenient procedure to measure turbidity is to measure the amount of light of a given wavelength transmitted by the solution, using, for example, an UV-visible spectrophotometer. Using this measure, optical clarity corresponds to high transmittance, since cloudier solutions will scatter more of the incident radiation, resulting in lower transmittance measurements.

Another method of determining optical clarity and carrier diffusivity through the aqueous boundary layer is to quantitatively measure the size of the particles of which the dispersion is composed. These measurements can be performed on commercially available particle size analyzers.

Other considerations will further inform the choice of specific proportions of different additives and contrast agent and drug. These considerations include the degree of bioacceptability of the additives and the desired dosage of hydrophobic therapeutic agent to be provided.

Therapeutic Agent

The drugs or biologically active materials, which can be used in embodiments of the present invention, can be any therapeutic agent or substance. The drugs can be of various physical states, e.g., molecular distribution, crystal forms or cluster forms. Examples of drugs that are especially useful in embodiments of the present invention are lipophilic substantially water insoluble drugs, such as paclitaxel, rapamycin, daunorubicin, doxorubicin, lapachone, vitamin D2 and D3 and analogues and derivatives thereof. These drugs are especially suitable for use in a coating on a balloon catheter used to treat tissue of the vasculature.

Other drugs that may be useful in embodiments of the present invention include, without limitation, glucocorticoids (e.g., dexamethasone, betamethasone), hirudin, angiopeptin, aspirin, growth factors, antisense agents, anti-cancer agents, anti-proliferative agents, oligonucleotides, and, more generally, anti-platelet agents, anti-coagulant agents, anti-mitotic agents, antioxidants, anti-metabolite agents, anti-chemotactic, and anti-inflammatory agents.

Also useful in embodiments of the present invention are polynucleotides, antisense, RNAi, or siRNA, for example, that inhibit inflammation and/or smooth muscle cell or fibroblast proliferation.

Anti-platelet agents can include drugs such as aspirin and dipyridamole. Aspirin is classified as an analgesic, antipyretic, anti-inflammatory and anti-platelet drug. Dipyridamole is a drug similar to aspirin in that it has anti-platelet characteristics. Dipyridamole is also classified as a coronary 50 vasodilator. Anti-coagulant agents for use in embodiments of the present invention can include drugs such as heparin, protamine, hirudin and tick anticoagulant protein. Anti-oxidant agents can include probucol. Anti-proliferative agents can include drugs such as amlodipine and doxazosin. Anti- 55 mitotic agents and anti-metabolite agents that can be used in embodiments of the present invention include drugs such as methotrexate, azathioprine, vincristine, vinblastine, 5-fluorouracil, adriamycin, and mutamycin. Antibiotic agents for use in embodiments of the present invention include penicil- 60 lin, cefoxitin, oxacillin, tobramycin, and gentamicin. Suitable antioxidants for use in embodiments of the present invention include probucol. Additionally, genes or nucleic acids, or portions thereof can be used as the therapeutic agent in embodiments of the present invention. Furthermore, collagen-synthesis inhibitors, such as tranilast, can be used as a therapeutic agent in embodiments of the present invention.

42

Photosensitizing agents for photodynamic or radiation therapy, including various porphyrin compounds such as porfimer, for example, are also useful as drugs in embodiments of the present invention.

Drugs for use in embodiments of the present invention also include everolimus, somatostatin, tacrolimus, roxithromycin, dunaimycin, ascomycin, bafilomycin, erythromycin, midecamycin, josamycin, concanamycin, clarithromycin, troleandomycin, folimycin, cerivastatin, simvastatin, lovastatin, fluvastatin, rosuvastatin, atorvastatin, pravastatin, pitavastatin, vinblastine, vincristine, vindesine, vinorelbine, etoposide, teniposide, nimustine, carmustine, lomustine, cyclophosphamide, 4-hydroxycyclophosphamide, estramustine, melphalan, ifosfamide, trofosfamide, chlorambucil, bendamustine, dacarbazine, busulfan, procarbazine, treosulfan, temozolomide, thiotepa, daunorubicin, doxorubicin, aclarubicin, epirubicin, mitoxantrone, idarubicin, bleomycin, mitomycin, dactinomycin, methotrexate, fludarabine, fludarabine-5'-dihydrogenphosphate, cladribine, mercaptopurine, thioguanine, cytarabine, fluorouracil, gemcitabine, capecitabine, docetaxel, carboplatin, cisplatin, oxaliplatin, amsacrine, irinotecan, topotecan, hydroxycarbamide, miltefosine, pentostatin, aldesleukin, tretinoin, asparaginase, pegaspargase, anastrozole, exemestane, letrozole, formestane, aminoglutethimide, adriamycin, azithromycin, spiramycin, cepharantin, smc proliferation inhibitor-2w, epothilone A and B, mitoxantrone, azathioprine, mycophenolatmofetil, c-mycantisense, b-myc-antisense, betulinic acid, camptothecin, lapachol, beta.-lapachone, podophyllotoxin, betulin, podophyllic acid 2-ethylhydrazide, molgramostim (rhuGM-CSF), peginterferon a-2b, lenograstim (r-HuG-CSF), filgrastim, macrogol, dacarbazine, basiliximab, daclizumab, selectin (cytokine antagonist), CETP inhibitor, cadherines, cytokinin inhibitors, COX-2 inhibitor, NFkB, angiopeptin, ciprofloxacin, camptothecin, fluroblastin, monoclonal antibodies, which inhibit the muscle cell proliferation, bFGF antagonists, probucol, prostaglandins, 1,11-dimethoxycanthin-6-one, 1-hydroxy-11-methoxycanthin-6-one, scopoletin, colchicine, NO donors such as pentaerythritol tetranitrate and syndnoeimines, S-nitrosoderivatives, tamoxifen, staurosporine, beta.-estradiol, a-estradiol, estriol, estrone, ethinylestradiol, fosfestrol, medroxyprogesterone, estradiol cypionates, estradiol benzoates, tranilast, kamebakaurin and other terpenoids, which are applied in the therapy of cancer, verapamil, tyrosine kinase inhibitors (tyrphostines), cyclosporine A, 6-ahydroxy-paclitaxel, baccatin, taxotere and other macrocyclic oligomers of carbon suboxide (MCS) and derivatives thereof. mofebutazone, acemetacin, diclofenac, lonazolac, dapsone, o-carbamoylphenoxyacetic acid, lidocaine, ketoprofen, mefenamic acid, piroxicam, meloxicam, chloroquine phosphate, penicillamine, hydroxychloroquine, auranofin, sodium aurothiomalate, oxaceprol, celecoxib, .beta.-sitosterin, ademetionine, myrtecaine, polidocanol, nonivamide, levomenthol, benzocaine, aescin, ellipticine, D-24851 (Calbiochem), colcemid, cytochalasin A-E, indanocine, nocodazole, S 100 protein, bacitracin, vitronectin receptor antagonists, azelastine, guanidyl cyclase stimulator tissue inhibitor of metal proteinase-1 and -2, free nucleic acids, nucleic acids incorporated into virus transmitters, DNA and RNA fragments, plasminogen activator inhibitor-1, plasminogen activator inhibitor-2, antisense oligonucleotides, VEGF inhibitors, IGF-1, active agents from the group of antibiotics such as cefadroxil, cefazolin, cefaclor, cefotaxim, tobramycin, gentamycin, penicillins such as dicloxacillin, oxacillin, sulfonamides, metronidazol, antithrombotics such as argatroban, aspirin, abciximab, synthetic antithrombin, bivalirudin, coumadin, enoxaparin, desulphated and N-reacetylated

heparin, tissue plasminogen activator, GpIlb/Illa platelet membrane receptor, factor Xa inhibitor antibody, heparin, hirudin, r-hirudin, PPACK, protamin, prourokinase, streptokinase, warfarin, urokinase, vasodilators such as dipyramidole, trapidil, nitroprussides, PDGF antagonists such as triazolopyrimidine and seramin, ACE inhibitors such as captopril, cilazapril, lisinopril, enalapril, losartan, thiol protease inhibitors, prostacyclin, vapiprost, interferon a, .beta and y, histamine antagonists, serotonin blockers, apoptosis inhibitors, apoptosis regulators such as p65 NF-kB or Bcl-xL 10 antisense oligonucleotides, halofuginone, nifedipine, tranilast, molsidomine, tea polyphenols, epicatechin gallate, epigallocatechin gallate, Boswellic acids and derivatives thereof, leflunomide, anakinra, etanercept, sulfasalazine, etoposide, dicloxacillin, tetracycline, triamcinolone, mutamy- 15 cin, procainamide, retinoic acid, quinidine, disopyramide, flecainide, propafenone, sotalol, amidorone, natural and synthetically obtained steroids such as bryophyllin A, inotodiol, maquiroside A, ghalakinoside, mansonine, strebloside, hydrocortisone, betamethasone, dexamethasone, non-steroi- 20 dal substances (NSAIDS) such as fenoprofen, ibuprofen, indomethacin, naproxen, phenylbutazone and other antiviral agents such as acyclovir, ganciclovir and zidovudine, antimycotics such as clotrimazole, flucytosine, griseofulvin, ketoconazole, miconazole, nystatin, terbinafine, antiprozoal 25 agents such as chloroquine, mefloquine, quinine, moreover natural terpenoids such as hippocaesculin, barringtogenol-C21-angelate, 14-dehydroagrostistachin, agroskerin, agrostistachin, 17-hydroxyagrostistachin, ovatodiolids, 4,7-oxycycloanisomelic acid, baccharinoids B1, B2, B3 and B7, 30 tubeimoside, bruceanol A, B and C, bruceantinoside C, yadanziosides N and P, isodeoxyelephantopin, tomenphantopin A and B, coronarin A, B, C and D, ursolic acid, hyptatic acid A, zeorin, iso-iridogermanal, maytenfoliol, effusantin A, excisanin A and B, longikaurin B, sculponeatin C, kamebau- 35 nin, leukamenin A and B, 13,18-dehydro-6-a-senecioyloxychaparrin, taxamairin A and B, regenilol, triptolide, moreover cymarin, apocymarin, aristolochic acid, anopterin, hydroxyanopterin, anemonin, protoanemonin, berberine, cheliburin chloride, cictoxin, sinococuline, bombrestatin A and B, cud- 40 raisoflavone A, curcumin, dihydronitidine, nitidine chloride, 12-beta-hydroxypregnadien-3,20-dione, bilobol, ginkgol, ginkgolic acid, helenalin, indicine, indicine-N-oxide, lasiocarpine, inotodiol, glycoside 1a, podophyllotoxin, justicidin A and B, larreatin, malloterin, mallotochromanol, isobutyryl- 45 mallotochromanol, maquiroside A, marchantin A, maytansine, lycoridicin, margetine, pancratistatin, liriodenine, bisparthenolidine, oxoushinsunine, aristolactam-AII, bisparthenolidine, periplocoside A, ghalakinoside, ursolic acid, deoxypsorospermin, psychorubin, ricin A, sanguinarine, 50 manwu wheat acid, methylsorbifolin, sphatheliachromen, stizophyllin, mansonine, strebloside, akagerine, dihydrousambarensine, hydroxyusambarine, strychnopentamine, strychnophylline, usambarine, usambarensine, berberine. liriodenine, oxoushinsunine, daphnoretin, lariciresinol, 55 methoxylariciresinol, syringaresinol, umbelliferon, afromoson, acetylvismione B, desacetylvismione A, and vismione A and B.

A combination of drugs can also be used in embodiments of the present invention. Some of the combinations have 60 additive effects because they have a different mechanism, such as paclitaxel and rapamycin, paclitaxel and active vitamin D, paclitaxel and lapachone, rapamycin and active vitamin D, rapamycin and lapachone. Because of the additive effects, the dose of the drug can be reduced as well. These 65 combinations may reduce complications from using a high dose of the drug.

44

Adherent Layer

The adherent layer, which is an optional layer underlying the drug coating layer, improves the adherence of the drug coating layer to the exterior surface of the medical device and protects coating integrity. If drug, contrast agent, and additive differ in their adherence to the medical device, the adherent layer may prevent differential loss (during transit) or elution (at the target site) of drug layer components in order to maintain consistent drug-to-additive or drug-to-drug or drug-tocontrast agent ratio in the drug layer and therapeutic delivery at the target site of intervention. Furthermore, the adherent layer may function to facilitate release of coating layer components which otherwise might adhere too strongly to the device for elution during brief contact with tissues at the target site. For example, in the case where a particular drug binds the medical device tightly, more hydrophilic components are incorporated into the adherent layer in order to decrease affinity of the drug to the device surface.

The adherent layer may also comprise one or more of the additives previously described, contrast agent, or other components, in order to maintain the integrity and adherence of the coating layer to the device and to facilitate both adherence of drug, contrast agent, and additive components during transit and rapid elution during deployment at the site of therapeutic intervention.

Top Layer

In order to further protect the integrity of the drug layer, an optional top layer may be applied to prevent loss of drug during transit through tortuous anatomy to the target site or during the initial expansion of the device before the coating makes direct contact with target tissue. The top layer may release slowly in the body lumen while protecting the drug layer. The top layer will erode more slowly if it is comprised of more hydrophobic, high molecular weight additives. Surfactants are examples of more hydrophobic structures with long fatty chains, such as Tween 20, Tween 40, Tween 60, Tween 80, and polyglyceryl oleate. High molecular weight additives include polyethylene oxide, polyethylene glycol, and polyvinyl pyrrolidone. Hydrophobic drug itself can act as a top layer component. For example, paclitaxel or rapamycin are hydrophobic. They can be used in the top layer. On the other hand, the top layer cannot erode too slowly or it might actually slow the release of drug during deployment at the target site. Other additives useful in the top coat include additives that strongly interact with drug or with the coating layer, such as L-ascorbic acid and its salt, D-glucoascorbic acid and its salt, tromethamine, triethanolamine, diethanolamine, meglumine, glucamine, amine alcohols, glucoheptonic acid, glucomic acid, gluconolactone, glucosamine, glutamic acid, benzyl alcohol, benzoic acid, hydroxybenzoic acid, propyl 4-hydroxybenzoate, lysine acetate salt, gentisic acid, lactobionic acid, lactitol, sinapic acid, vanillic acid, vanillin, methyl paraben, propyl paraben, cyclodextrin, (2-hydroxypropyl)-cyclodextrin, acetaminophen, ibuprofen, retinoic acid, lysine acetate, gentisic acid, catechin, catechin gallate, tiletamine, ketamine, propofol, lactic acids, acetic acid, salts of any organic acid and amine described above, polyglycidol, glycerols, multiglycerols, and derivatives thereof.

Solvents

Solvents for preparing of the coating layer may include, as examples, any combination of one or more of the following: (a) water, (b) alkanes such as hexane, octane, cyclohexane, and heptane, (c) aromatic solvents such as benzene, toluene, and xylene, (d) alcohols such as ethanol, propanol, and isopropanol, diethylamide, ethylene glycol monoethyl ether, Trascutol, and benzyl alcohol (e) ethers such as dioxane, dimethyl ether and tetrahydrofuran, (f) esters/acetates such as

ethyl acetate and isobutyl acetate, (g) ketones such as acetone, acetonitrile, diethyl ketone, and methyl ethyl ketone, and (h) mixture of water and organic solvents such as water/ethanol, water/acetone, water/methanol, water/tetrahydrofuran.

Organic solvents, such as short-chained alcohol, dioxane, 5 tetrahydrofuran, dimethylformamide, acetonitrile, dimethylsulfoxide, etc., are particularly useful and preferred solvents in embodiments of the present invention because these organic solvents generally disrupt collodial aggregates and co-solubilize all the components in the coating solution.

The therapeutic agent, contrast agent, and additive or additives may be dispersed in, solubilized, or otherwise mixed in the solvent. The weight percent of drug and contrast agent and additives in the solvent may be in the range of 0.1-80% by weight, preferably 2-20% by weight.

Another embodiment of the invention relates to a method for preparing a medical device, particularly, for example, a balloon catheter or a stent. First, a coating solution or suspension comprising at least one solvent, at least one therapeutic agent, at least one contrast agent, and at least one additive is prepared. In at least one embodiment, the coating solution or suspension includes only these four components. The content of the therapeutic agent in the coating solution can be from 0.5-50% by weight based on the total weight of the solution. 25 The content of the contrast agent or of the additive in the coating solution can be from 1-45% by weight, 1 to 40% by weight, or from 1-15% by weight based on the total weight of the solution. The amount of solvent used depends on the coating process and viscosity. It will affect the uniformity of the drug-additive/contrast agent coating but will be evaporated.

In other embodiments, two or more solvents, two or more therapeutic agents, and/or two or more contrast agents, and/or two or more additives may be used in the coating solution.

Various techniques may be used for applying a coating solution to a medical device such as casting, spinning, spraying, dipping (immersing), ink jet printing, electrostatic techniques, and combinations of these processes. Choosing an application technique principally depends on the viscosity and surface tension of the solution. In embodiments of the present invention, dipping and spraying are preferred because it makes it easier to control the uniformity of the thickness of the coating layer as well as the concentration of the therapeutic agent applied to the medical device. Regardless of whether the coating is applied by spraying or by dipping or by another method or combination of methods, each layer is usually deposited on the medical device in multiple application steps in order to control the uniformity and the amount of therapeutic substance and additive applied to the medical device.

Each applied layer is from about 0.1 microns to 15 microns in thickness. The total number of layers applied to the medical device is in a range of from about 2 to 50. The total thickness of the coating is from about 2 to 200 microns.

As discussed above, spraying and dipping are particularly 55 useful coating techniques for use in embodiments of the present invention. In a spraying technique, a coating solution or suspension of an embodiment of the present invention is prepared and then transferred to an application device for applying the coating solution or suspension to a balloon catheter.

An application device that may be used is a paint jar attached to an air brush, such as a Badger Model 150, supplied with a source of pressurized air through a regulator (Norgren, 0-160 psi). When using such an application device, once the 65 brush hose is attached to the source of compressed air downstream of the regulator, the air is applied. The pressure is

46

adjusted to approximately 15-25 psi and the nozzle condition checked by depressing the trigger.

Prior to spraying, both ends of the relaxed balloon are fastened to the fixture by two resilient retainers, i.e., alligator clips, and the distance between the clips is adjusted so that the balloon remained in a deflated, folded, or an inflated or partially inflated, unfolded condition. The rotor is then energized and the spin speed adjusted to the desired coating speed, about 40 rpm.

With the balloon rotating in a substantially horizontal plane, the spray nozzle is adjusted so that the distance from the nozzle to the balloon is about 1-4 inches. First, the coating solution is sprayed substantially horizontally with the brush being directed along the balloon from the distal end of the balloon to the proximal end and then from the proximal end to the distal end in a sweeping motion at a speed such that one spray cycle occurred in about three balloon rotations. The balloon is repeatedly sprayed with the coating solution, followed by drying, until an effective amount of the drug is deposited on the balloon.

In one embodiment of the present invention, the balloon is inflated or partially inflated, the coating solution is applied to the inflated balloon, for example by spraying, and then the balloon is deflated and folded before drying. Drying may be performed under vacuum.

It should be understood that this description of an application device, fixture, and spraying technique is exemplary only. Any other suitable spraying or other technique may be used for coating the medical device, particularly for coating the balloon of a balloon catheter or stent delivery system or stent.

After the medical device is sprayed with the coating solution, the coated balloon is subjected to a drying in which the solvent in the coating solution is evaporated. This produces a coating matrix on the balloon containing the therapeutic agent. One example of a drying technique is placing a coated balloon into an oven at approximately 20° C. or higher for approximately 24 hours. Any other suitable method of drying the coating solution may be used. The time and temperature may vary with particular additives and therapeutic agents.

Optional Post Treatment

After depositing the drug-additive containing layer on the device of certain embodiments of the present invention, dimethyl sulfoxide (DMSO) or other solvent may be applied, by dip or spray or other method, to the finished surface of the coating. DMSO readily dissolves drugs and easily penetrates membranes and may enhance tissue absorption.

It is contemplated that the medical devices of embodiments of the present invention have applicability for treating blockages and occlusions of any body passageways, including, among others, the vasculature, including coronary, peripheral, and cerebral vasculature, the gastrointestinal tract, including the esophagus, stomach, small intestine, and colon, the pulmonary airways, including the trachea, bronchi, bronchioles, the sinus, the biliary tract, the urinary tract, prostate and brain passages. They are especially suited for treating tissue of the vasculature with, for example, a balloon catheter or a stent.

Yet another embodiment of the present invention relates to a method of treating a blood vessel. The method includes inserting a medical device comprising a coating into a blood vessel. The coating layer comprises a therapeutic agent, a contrast agent, and an additive. In this embodiment, the medical device can be configured as having at least an expandable portion. Some examples of such devices include balloon catheters, perfusion balloon catheters, cutting balloon catheters, scoring balloon catheters, self-expanded and balloon

expanded-stents, guide catheters, guide wires, embolic protection devices, and various imaging devices.

As mentioned above, one example of a medical device that is particularly useful in the present invention is a coated balloon catheter. A balloon catheter typically has a long, 5 narrow, hollow tube tabbed with a miniature, deflated balloon. In embodiments of the present invention, the balloon is coated with a drug solution. Then, the balloon is maneuvered through the cardiovascular system to the site of a blockage, occlusion, or other tissue requiring a therapeutic agent. Once 10 in the proper position, the balloon is inflated and contacts the walls of the blood vessel and/or a blockage or occlusion. It is an object of embodiments of the present invention to rapidly deliver drug to and facilitate absorption by target tissue. It is advantageous to efficiently deliver drug to tissue in as brief a period of time as possible while the device is deployed at the target site. The therapeutic agent is released into such tissue, for example the vessel walls, in about 0.1 to 30 minutes, for example, or preferably about 0.1 to 10 minutes, or more preferably about 0.2 to 2 minutes, or most preferably, about 20 0.1 to 1 minutes, of balloon inflation time pressing the drug coating into contact with diseased vascular tissue.

Further, the balloon catheter may be used to treat vascular tissue/disease alone or in combination with other methods for treating the vasculature, for example, photodynamic therapy 25 or atherectomy. Atherectomy is a procedure to remove plaque from arteries. Specifically, atherectomy removes plaque from peripheral and coronary arteries. The medical device used for peripheral or coronary atherectomy may be a laser catheter or a rotablator or a direct atherectomy device on the end of a 30 catheter. The catheter is inserted into the body and advanced through an artery to the area of narrowing. After the atherectomy has removed some of the plaque, balloon angioplasty using the coated balloon of embodiments of the present invention may be performed. In addition, stenting may be 35 performed thereafter, or simultaneous with expansion of the coated balloon as described above. Photodynamic therapy is a procedure where light or irradiated energy is used to kill target cells in a patient. A light-activated photosensitizing drug may be delivered to specific areas of tissue by embodi- 40 ments of the present invention. A targeted light or radiation source selectively activates the drug to produce a cytotoxic response and mediate a therapeutic anti-proliferative effect.

In some of the embodiments of drug and contrast agent-containing coatings and layers according to the present invention, however, the coating or layer does not include polymers, oils, or lipids. And, furthermore, the therapeutic agent is not encapsulated in polymer particles, micelles, or liposomes. As described above, such formulations have significant disadvantages and can inhibit the intended efficient, rapid release and tissue penetration of the agent, especially in the environment of diseased tissue of the vasculature.

Although various embodiments are specifically illustrated and described herein, it will be appreciated that modifications and variations of the present invention are covered by the 55 above teachings and are within the purview of the appended claims without departing from the spirit and intended scope of the invention.

Unless otherwise indicated, all numbers expressing quantities of components in a layer, reaction conditions, and so 60 forth used in the specification and claims are to be understood as being modified in all instances by the term "about." Accordingly, unless otherwise indicated to the contrary, the numerical parameters set forth in this specification and attached claims are approximations that may vary depending 65 upon the desired properties sought to be obtained by the present disclosure.

48

Preparation

The medical device and the coating layers of embodiments of the present invention can be made according to various methods. For example, the coating solution can be prepared by dispersing, dissolving, diffusing, or otherwise mixing all the ingredients, such as a therapeutic agent, a contrast agent, an additive, and a solvent, simultaneously together. Also, the coating solution can be prepared by sequentially adding each component based on solubility or any other parameters. For example, the coating solution can be prepared by first adding the therapeutic agent to the solvent and then adding the additive and the contrast agent. Alternatively, the additive and the contrast agent can be added to the solvent first and then the therapeutic agent can be later added. If the solvent used does not sufficiently dissolve the drug, it is preferable to first add the additive to the solvent, then the drug, since the additive will increase drug solubility in the solvent.

EXAMPLES

The following examples include embodiments of medical devices and coating layers within the scope of the present invention. While the following examples are considered to embody the present invention, the examples should not be interpreted as limitations upon the present invention.

Example 1

Preparation of Coating Solutions

Formulation 1—50-100 mg (0.06-0.12 mmmole) paclitaxel, 1-1.6 ml acetone, 1-1.6 ml ethanol, 50-100 mg iopromide, and 50-100 mg Tween 20 are mixed.

Formulation 2—50-100 mg (0.06-0.12 mmmole) paclitaxel, 1-1.6 ml acetone, 1-1.6 ml ethanol, 50-100 mg iopromide, and 50-100 mg Tween 40 are mixed.

Formulation 3—50-100 mg (0.05-0.11 mmmole) rapamycin, 1-1.6 ml acetone, 1-1.6 ml ethanol, 50-100 mg iopromide, and 50-100 mg Tween 20 are mixed.

Formulation 4—50-100 mg (0.05-0.11 mmmole) rapamycin, 0.5-1.0 ml acetone, 0.5-1.0 ml ethanol, 5-35 mg iopromide, and 35-70 mg Tween 40 are mixed.

Formulation 5—50-100 mg (0.06-0.12 mmmole) paclitaxel, 1-1.6 ml acetone, 1-1.6 ml ethanol, 50-100 mg loversol, and 50-100 mg Tween 20 are mixed.

Formulation 6—50-100 mg (0.06-0.12 mmmole) paclitaxel, 1-1.6 ml acetone, 1-1.6 ml ethanol, 50-100 mg loversol, and 50-100 mg Tween 40 are mixed.

Formulation 7—50-100 mg (0.05-0.11 mmmole) rapamycin, 1-1.6 ml acetone, 1-1.6 ml ethanol, 50-100 mg iomeprol, and 50-100 mg Tween 20 are mixed.

Formulation 8—50-100 mg (0.05-0.11 mmmole) rapamycin, 0.5-1.0 ml acetone, 0.5-1.0 ml ethanol, 5-35 mg iomeprol, and 35-70 mg Tween 40 are mixed.

Example 2

5 PTCA balloon catheters (3 mm in diameter and 20 mm in length) are folded with three wings under vacuum. The folded balloon under vacuum is sprayed or dipped in a formulation (1-8) in example 1. The folded balloon is then dried, sprayed or dipped again, dried again, and sprayed or dipped again until sufficient amount of drug on the balloon (3 microgram per square mm) is obtained. The coated folded balloon is then rewrapped and sterilized for animal testing.

Example 3

Drug coated balloon catheters and uncoated balloon catheters (as control) are inserted into coronary arteries in pigs.

The balloon is over dilated (1:1.2), and the inflated balloon is held in the vessel for 60 seconds to release drug and additive, then deflated and withdrawn from the pig. The animals are angiographed after 3 days, 31 days, 3 months, 6 months, 9 months and 12 months. The amount of drug in the artery tissues of the sacrificed animal is measured after 60 minutes. 3 days, 31 days, 3 months, 6 months, 9 months and 12 months.

Example 4

5 coronary stents (3 mm in diameter and 18 mm in length) are spray or dip coated with the formulation (1-8) in example 1. The stents are then dried, sprayed or dipped again, and dried again until a sufficient amount of drug on the stent (3 microgram per square mm) is obtained. The coated stent is then crimped on PTCA balloon catheters (3 mm in diameters and 20 mm in length). The coated stents with balloon catheters are then sterilized for animal testing.

Example 5

The drug coated stent and uncoated stent (as control) are inserted into coronary arteries in pigs, then the balloon is over dilated (1:1.2). The stent is implanted and drug and additive is $_{25}$ released, and the balloon is deflated and withdrawn from the pig. The animals are then angiographed after 5, 30, 60 minutes, 3 days, 31 days, 3 months, 6 months, 9 months and 12 months. The amount of drug in the artery tissues of the sacrificed animal is measured 60 minutes, 1 day, 3 days, 31 days, 30 3 months, 6 months, 9 months and 12 months.

Example 6

5 PTCA balloon catheters are sprayed or dipped in the 35 formulation (1-8) in example 1, dried, and sprayed or dipped and dried again until sufficient amount of drug on balloon is obtained (3 microgram per square mm). A bare metal coronary stent (3 mm in diameter and 20 mm in length) is crimped on each coated balloon. The coated balloons with crimped bare metal stents are then wrapped and sterilized for animal test.

Example 7

The drug coated balloon with expandable bare metal stent of Examples 6 and plain balloon with expandable bare metal stent (as control) are inserted into coronary arteries in pigs, and the balloon is over dilated (1:1.2). Stent is implanted, and the balloon is held inflated for 60 seconds to release drug and additive, and the balloon is deflated and withdrawn from the pig. The animals are then angiographed after 5, 30, 60 minutes, 3 days, 31 days, 3 months, 6 months, 9 months and 12 months. The amount of drug in the artery tissues of the sac- 55 rificed animal is measured after 60 minutes, 1 day, 3 days, 31 days, 3 months, 6 months, 9 months and 12 months.

Example 8

The drug coated balloon catheters and uncoated balloon catheters (as control) are inserted via a bronchoscope into the pulmonary airway in pigs. The balloon is dilated, and the inflated balloon is held expanded in the lumen for 60 seconds withdrawn from the pig. The animals are then examined bronchoscopically and tissues samples are taken for pathol50

ogy and quantification of drug uptake after 3 days, 31 days, 3 months, 6 months, 9 months and 12 months.

Example 9

The uncoated stent delivery catheters are inserted into the vascular lumen in pigs. The balloon is dilated, the stent is deployed, and the deflated balloon is then withdrawn. The pharmaceutical formulation (1-8) of example 1 (10-100 ml) is injected (about 5-15 mg drug per pig) at the site of stent implantation. The drug is then absorbed by injured tissue. The animals are then examined and tissues samples were taken for pathology.

Example 10

The diseased tissue (breast cancer or prostate or atheroma or stenosis) is removed surgically from a human body. The pharmaceutical formulation (1-8) of example 1 (10-100 ml) is ²⁰ then injected into or onto the surgical cavities created by the surgical intervention (about 5-20 mg drug). The local drug delivery included injection by long needle, guide catheters, introducer sheath, drug infusion tube and other drug delivery catheters. The drug is then absorbed by tissue at the target site.

Example 11

6 PTCA balloon catheters (3.5 and 3.0 mm in diameter and 20 mm in length) are inflated at 1-3 atm. The inflated balloon is loaded with a formulation (1-8) in example 1. A sufficient amount of drug on the balloon (3 microgram per square mm) is obtained. The inflated balloon is folded, and then dried. The coated folded balloon is then rewrapped and sterilized for animal testing.

The coated PTCA balloon catheter is inserted into a target site in the coronary vasculature (LAD, LCX and RCA) of a 25-45 pound pig. The balloon is inflated to about 12 atm. The overstretch ratio (the ratio of balloon diameter to vessel diameter) is about 1.15-1.20. The drug is delivered into the blood vessel during 30-60 seconds of inflation. The balloon catheter is then deflated and is withdrawn from animal body. The target blood vessel is harvested 0.25-24 hours after the procedure. The drug content in the target tissue and the residual drug remaining on the balloon is analyzed by tissue extraction and HPLC.

In some of these animal studies, a stent is crimped on the drug coated balloon catheters prior to deployment. In chronic animal tests, angiography is performed before and after all interventions and at 28-35 days after the procedure. Luminal diameters are measured and late lumen loss is calculated. Late lumen loss is the difference between the minimal lumen diameter measured after a period of follow-up time (usually weeks to months after an intervention, such as angioplasty and stent placement in the case of this example) and the minimal lumen diameter measured immediately after the intervention. Restenosis may be quantified by the diameter stenosis, which is the difference between the mean lumen diameters at follow-up and immediately after the procedure divided by the mean lumen diameter immediately after the procedure.

Example 12

6 PTCA balloon components (3.5 and 3.0 mm in diameter to release drug and additive. The balloon is deflated and 65 and 20 mm in length) are loaded with formulation 1 provided in Example 1. A sufficient amount of drug (3 μg/mm²) is obtained on the balloon surface. The balloon is dried.

A formulation for a top coating layer is then prepared. The formulation of the top coating layer is paclitaxel, and one additive chosen from Tween 20, Tween 80, polypropylene glycol-425 (PPG-425), and polypropyl glycol-1000 (PPG-1000), in acetone. The balloon surface of the control catheters is only loaded with formulation 1.25-50 mg of the top coating formulation (about 50% of paclitaxel by weight) in acetone is coated over the formulation 1 coating layer on the other balloon surfaces. The coated balloons are dried for drug releasing testing in vitro.

The releasing experiment is designed to test how much drug is lost during balloon inflation. Each of the coated balloons is inflated to 12 atm. in 1% BSA solution at 37° C. for 2 minutes. The drug, additive and top coating are released. The residual drug on the balloon catheters is analyzed by 15 HPLC. The top coating layer reduces drug loss in the tests in vitro during inflation of the balloon components.

What is claimed is:

1. A medical device for delivering a therapeutic agent to a tissue, the device comprising a layer overlying an exterior 20 surface of the medical device, the layer comprising a therapeutic agent, a contrast agent, and at least one first additive,

the therapeutic agent is chosen from the group consisting of paclitaxel, rapamycin, beta-lapachone, biologically 25 active vitamin D, and combinations thereof;

the contrast agent is chosen from iobitridol, iohexol, iomeprol, iopamidol, iopentol, iopromide, ioversol, ioxilan, iotrolan, iodixanol, ioxaglate, and their derivatives; and selected from the group consisting of PEG laurates, PEG oleates, PEG stearates, PEG glyceryl laurates, PEG glyceryl oleates, PEG glyceryl stearates, PEG sorbitan monolaurates, PEG sorbitan monooleates, PEG sorbitan stearates, PEG sorbitan laurates, PEG sorbitan oleates, 35 PEG sorbitan palmitates, and combinations thereof.

- 2. The medical device of claim 1, wherein the tissue includes tissue of one of coronary vasculature, peripheral vasculature, cerebral vasculature, esophagus, airways, sinus, trachea, colon, biliary tract, urinary tract, prostate, and brain 40 passages.
- 3. The medical device of claim 1, wherein the at least one first additive is selected from the group consisting of PEG-20 sorbitan monolaurate, PEG-20 sorbitan monopalmitate, PEG-20 sorbitan monostearate, PEG-20 sorbitan 45 monooleate, and combinations thereof.
 - **4**. The medical device of claim **1**, wherein:

the contrast agent is selected from the group consisting of iopromide, ioversol, and iomeprol; and

the at least one first additive is selected from the group 50 consisting of PEG-20 sorbitan monolaurate, PEG-20 sorbitan monopalmitate, PEG-20 sorbitan monostearate, PEG-20 sorbitan monooleate, and combinations thereof.

5. The medical device of claim 4, wherein:

the therapeutic agent is paclitaxel;

the contrast agent is iopromide; and

the at least one first additive is PEG-20 sorbitan monolau-

6. The medical device of claim 4, wherein:

the therapeutic agent is paclitaxel;

the contrast agent is iopromide; and

the at least one first additive is PEG-20 sorbitan monopalmitate.

7. The medical device of claim 4, wherein: the therapeutic agent is rapamycin; the contrast agent is iopromide; and

52

the at least one first additive is PEG-20 sorbitan monolau-

8. The medical device of claim 4, wherein:

the therapeutic agent is rapamycin;

the contrast agent is iopromide; and

the at least one first additive is PEG-20 sorbitan monopalmitate.

9. The medical device of claim 4, wherein:

the therapeutic agent is paclitaxel;

the contrast agent is ioversol; and

the at least one first additive is PEG-20 sorbitan monolau-

10. The medical device of claim 4, wherein:

the therapeutic agent is paclitaxel;

the contrast agent is ioversol; and

the at least one first additive is PEG-20 sorbitan monopalmitate.

11. The medical device of claim 4, wherein:

the therapeutic agent is rapamycin;

the contrast agent is iomeprol; and

the at least one first additive is PEG-20 sorbitan monolaurate

12. The medical device of claim **4**, wherein:

the therapeutic agent is rapamycin;

the contrast agent is iomeprol; and

the at least one first additive is PEG-20 sorbitan monopalmitate.

- 13. The medical device of claim 1, wherein the coating the at least one first additive comprises a PEG fatty ester 30 layer further comprises a hydrophilic second additive selected from the group consisting of polyglyceryl-10 oleate, p-isononylphenoxypolyglycidol, L-ascorbic acid, D-glucoascorbic acid, tromethamine, triethanolamine, diethanolamine, meglumine, glucamine, glucoheptonic acid, glucomic acid, hydroxyl ketone, hydroxyl lactone, gluconolactone, glucoheptonolactone, glucooctanoic lactone, gulonic acid lactone, mannonic acid lactone, ribonic acid lactone, lactobionic acid, glucosamine, glutamic acid, benzyl alcohol, benzoic acid, hydroxybenzoic acid, propyl 4-hydroxybenzoate, lysine acetate, gentisic acid, lactobionic acid, lactitol, sorbitol, glucose, ribose, arabinose, lyxose, xylose, fructose, mannose, glucitol, glucopyranose phosphate, sinapic acid, vanillic acid, vanillin, methyl paraben, propyl paraben, diethylene glycol, triethylene glycol, tetraethylene glycol, xylitol, 2-ethoxyethanol, galactose, glucose, mannose, xylose, sucrose, lactose, maltose, cyclodextrin, sorbitol, (2-hydroxypropyl)-cyclodextrin, acetaminophen, ibuprofen, retinoic acid, lysine acetate, gentisic acid, catechin, catechin gallate, tiletamine, ketamine, propofol, lactic acids, acetic acid, and salts of any of the foregoing organic acids or amines.
 - 14. The medical device of claim 13, wherein the hydrophilic second additive is selected from the group consisting of polyglyceryl-10 oleate, p-isononylphenoxypolyglycidol, gluconolactone, sorbitol, lactobionic acid, and N-octanoyl-55 N-methylglucamine.
 - 15. The medical device of claim 13, wherein the hydrophilic second additive is selected from the group consisting of gluconolactone, sorbitol, and combinations thereof.
 - 16. The medical device of claim 13, wherein the at least one 60 first additive is PEG-20 sorbitan monolaurate and the hydrophilic second additive is selected from the group consisting of gluconolactone, sorbitol, lactobionic acid, N-octanoyl-Nmethylglucamine, and combinations thereof.
 - 17. The medical device of claim 13, wherein the at least one 65 first additive is PEG-20 sorbitan monolaurate, and the hydrophilic second additive is selected from the group consisting of gluconolactone, sorbitol and combinations thereof.

18. The medical device of claim 13, wherein the therapeutic agent is paclitaxel, the at least one first additive is PEG-20 sorbitan monolaurate, and the hydrophilic second additive is gluconolactone.

- 19. The medical device of claim 13, wherein the therapeutic agent is paclitaxel, the at least one first additive is PEG-20 sorbitan monolaurate, and the hydrophilic second additive is sorbitol.
- 20. The medical device of claim 1, wherein the medical device is chosen from a balloon catheter, a perfusion balloon 10 catheter, an infusion catheter, a perforated balloon, a porous balloon, a weeping balloon, a cutting balloon catheter, a scoring balloon catheter, a laser catheter, an atherectomy device, a debulking catheter, a stent, a filter, a stent graft, a covered stent, a patch, a wire, and a valve.

* * * * :